Properties

Label 4.4.11324.1-8.1-d3
Base field 4.4.11324.1
Conductor norm \( 8 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.11324.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 5 x^{2} + 4 x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([2, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a^{3}-4a+1\right){y}={x}^{3}+\left(a^{2}+a-3\right){x}^{2}+\left(-1149a^{3}-3922a^{2}+3071a+1540\right){x}-99521a^{3}-216742a^{2}+264677a+117393\)
sage: E = EllipticCurve([K([1,0,0,0]),K([-3,1,1,0]),K([1,-4,0,1]),K([1540,3071,-3922,-1149]),K([117393,264677,-216742,-99521])])
 
gp: E = ellinit([Polrev([1,0,0,0]),Polrev([-3,1,1,0]),Polrev([1,-4,0,1]),Polrev([1540,3071,-3922,-1149]),Polrev([117393,264677,-216742,-99521])], K);
 
magma: E := EllipticCurve([K![1,0,0,0],K![-3,1,1,0],K![1,-4,0,1],K![1540,3071,-3922,-1149],K![117393,264677,-216742,-99521]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3+a^2-3a)\) = \((a^3-5a)\cdot(-a^2+a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 8 \) = \(2\cdot4\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-5a^3-15a^2+19a+22)\) = \((a^3-5a)\cdot(-a^2+a+3)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 524288 \) = \(2\cdot4^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{9135977966106098429399}{512} a^{3} + \frac{867628940947068681587}{256} a^{2} - \frac{21807541432668180905747}{256} a - \frac{959710996587311585475}{32} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 0.027495042004777190487634686949203228441 \)
Tamagawa product: \( 9 \)  =  \(1\cdot3^{2}\)
Torsion order: \(1\)
Leading coefficient: \( 1.69521386163539 \)
Analytic order of Ш: \( 729 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-5a)\) \(2\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((-a^2+a+3)\) \(4\) \(9\) \(I_{9}\) Split multiplicative \(-1\) \(1\) \(9\) \(9\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3 and 9.
Its isogeny class 8.1-d consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.