Properties

Label 4.4.11324.1-8.1-c3
Base field 4.4.11324.1
Conductor norm \( 8 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.11324.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 5 x^{2} + 4 x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([2, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}-3a+1\right){x}{y}+\left(a^{3}-4a+1\right){y}={x}^{3}+\left(-a^{3}+a^{2}+3a-2\right){x}^{2}+\left(-a^{3}+a^{2}-1\right){x}-3a^{3}-2a^{2}+5a\)
sage: E = EllipticCurve([K([1,-3,0,1]),K([-2,3,1,-1]),K([1,-4,0,1]),K([-1,0,1,-1]),K([0,5,-2,-3])])
 
gp: E = ellinit([Polrev([1,-3,0,1]),Polrev([-2,3,1,-1]),Polrev([1,-4,0,1]),Polrev([-1,0,1,-1]),Polrev([0,5,-2,-3])], K);
 
magma: E := EllipticCurve([K![1,-3,0,1],K![-2,3,1,-1],K![1,-4,0,1],K![-1,0,1,-1],K![0,5,-2,-3]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3+a^2-3a)\) = \((a^3-5a)\cdot(-a^2+a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 8 \) = \(2\cdot4\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^2+4a-4)\) = \((a^3-5a)^{8}\cdot(-a^2+a+3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1024 \) = \(2^{8}\cdot4\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{174483}{16} a^{3} - 234 a^{2} + \frac{466917}{8} a + \frac{352373}{16} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a + 1 : -3 a^{3} - 2 a^{2} + 10 a + 2 : 1\right)$
Height \(0.37445390025906451375872799079735884855\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{3}{4} a^{2} - \frac{1}{2} a + \frac{1}{2} : \frac{5}{8} a^{3} + \frac{5}{4} a^{2} - \frac{1}{4} a - 2 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.37445390025906451375872799079735884855 \)
Period: \( 266.03421493341625030210167234789886618 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 1.87225896623124 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-5a)\) \(2\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)
\((-a^2+a+3)\) \(4\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 8.1-c consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.