Properties

Label 4.4.11324.1-8.1-c2
Base field 4.4.11324.1
Conductor norm \( 8 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.11324.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 5 x^{2} + 4 x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([2, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}+a^{2}-3a-3\right){x}{y}+\left(a^{3}-4a\right){y}={x}^{3}+\left(a^{2}+a-3\right){x}^{2}+\left(242a^{3}-718a^{2}+323a+220\right){x}+6877a^{3}-21198a^{2}+9972a+6560\)
sage: E = EllipticCurve([K([-3,-3,1,1]),K([-3,1,1,0]),K([0,-4,0,1]),K([220,323,-718,242]),K([6560,9972,-21198,6877])])
 
gp: E = ellinit([Polrev([-3,-3,1,1]),Polrev([-3,1,1,0]),Polrev([0,-4,0,1]),Polrev([220,323,-718,242]),Polrev([6560,9972,-21198,6877])], K);
 
magma: E := EllipticCurve([K![-3,-3,1,1],K![-3,1,1,0],K![0,-4,0,1],K![220,323,-718,242],K![6560,9972,-21198,6877]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3+a^2-3a)\) = \((a^3-5a)\cdot(-a^2+a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 8 \) = \(2\cdot4\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2)\) = \((a^3-5a)^{2}\cdot(-a^2+a+3)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 16 \) = \(2^{2}\cdot4\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -802630664191 a^{3} + 2479833481214 a^{2} - 1168780558340 a - \frac{1536406845933}{2} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-4 a^{3} + 11 a^{2} - 5 a - 3 : 9 a^{3} - 24 a^{2} + 11 a + 7 : 1\right)$
Height \(0.37445390025906451375872799079735884855\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{3}{2} a^{3} - 6 a^{2} + 3 a + \frac{9}{4} : \frac{17}{8} a^{3} - \frac{21}{8} a^{2} + \frac{7}{8} a + \frac{3}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.37445390025906451375872799079735884855 \)
Period: \( 266.03421493341625030210167234789886618 \)
Tamagawa product: \( 2 \)  =  \(2\cdot1\)
Torsion order: \(2\)
Leading coefficient: \( 1.87225896623124 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-5a)\) \(2\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((-a^2+a+3)\) \(4\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 8.1-c consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.