Properties

Label 4.4.11324.1-8.1-c1
Base field 4.4.11324.1
Conductor norm \( 8 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.11324.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 5 x^{2} + 4 x + 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([2, 4, -5, -1, 1]))
 
gp: K = nfinit(Polrev([2, 4, -5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 4, -5, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{3}+a^{2}-4a-3\right){x}{y}+a{y}={x}^{3}+\left(-a^{3}-a^{2}+3a+3\right){x}^{2}+\left(-7a^{3}+32a+4\right){x}-5a^{3}-2a^{2}+24a+12\)
sage: E = EllipticCurve([K([-3,-4,1,1]),K([3,3,-1,-1]),K([0,1,0,0]),K([4,32,0,-7]),K([12,24,-2,-5])])
 
gp: E = ellinit([Polrev([-3,-4,1,1]),Polrev([3,3,-1,-1]),Polrev([0,1,0,0]),Polrev([4,32,0,-7]),Polrev([12,24,-2,-5])], K);
 
magma: E := EllipticCurve([K![-3,-4,1,1],K![3,3,-1,-1],K![0,1,0,0],K![4,32,0,-7],K![12,24,-2,-5]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^3+a^2-3a)\) = \((a^3-5a)\cdot(-a^2+a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 8 \) = \(2\cdot4\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((2a^3-12a+2)\) = \((a^3-5a)^{2}\cdot(-a^2+a+3)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1024 \) = \(2^{2}\cdot4^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1148659}{16} a^{3} - 97391 a^{2} - \frac{2597693}{8} a + \frac{1618985}{4} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{2} - 4 : a^{2} - a - 6 : 1\right)$
Height \(0.093613475064766128439681997699339712138\)
Torsion structure: \(\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{1}{2} a^{3} - 2 a - \frac{1}{2} : \frac{5}{4} a^{3} - \frac{1}{4} a^{2} - \frac{27}{4} a - \frac{1}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.093613475064766128439681997699339712138 \)
Period: \( 1064.1368597336650012084066893915954647 \)
Tamagawa product: \( 8 \)  =  \(2\cdot2^{2}\)
Torsion order: \(4\)
Leading coefficient: \( 1.87225896623124 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^3-5a)\) \(2\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((-a^2+a+3)\) \(4\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 8.1-c consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.