Properties

Label 4.4.1125.1-145.3-a4
Base field \(\Q(\zeta_{15})^+\)
Conductor norm \( 145 \)
CM no
Base change no
Q-curve no
Torsion order \( 12 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\zeta_{15})^+\)

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 4 x^{2} + 4 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 4, -4, -1, 1]))
 
gp: K = nfinit(Polrev([1, 4, -4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, -4, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{3}-3a+1\right){y}={x}^{3}+\left(-a^{3}+a^{2}+4a-2\right){x}^{2}+\left(7a^{3}-19a^{2}-86a-45\right){x}+353a^{3}+222a^{2}-980a-125\)
sage: E = EllipticCurve([K([1,1,0,0]),K([-2,4,1,-1]),K([1,-3,0,1]),K([-45,-86,-19,7]),K([-125,-980,222,353])])
 
gp: E = ellinit([Polrev([1,1,0,0]),Polrev([-2,4,1,-1]),Polrev([1,-3,0,1]),Polrev([-45,-86,-19,7]),Polrev([-125,-980,222,353])], K);
 
magma: E := EllipticCurve([K![1,1,0,0],K![-2,4,1,-1],K![1,-3,0,1],K![-45,-86,-19,7],K![-125,-980,222,353]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3-a^2+3a-2)\) = \((-a-1)\cdot(-a^3+a^2+4a-2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 145 \) = \(5\cdot29\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((125a^3+115a^2+1080a-760)\) = \((-a-1)^{6}\cdot(-a^3+a^2+4a-2)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 9294114390625 \) = \(5^{6}\cdot29^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1583779420652621584630444}{14870583025} a^{3} + \frac{1309929568361659159883623}{14870583025} a^{2} - \frac{3941757265842103816828531}{14870583025} a - \frac{173366239902931707913796}{2974116605} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(3 a^{3} + a^{2} - 9 a + 2 : -4 a^{3} - 2 a^{2} + 11 a : 1\right)$ $\left(4 a^{3} + a^{2} - 12 a + 1 : -14 a^{3} - 6 a^{2} + 46 a + 9 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 169.18132756288934889683727247277332392 \)
Tamagawa product: \( 36 \)  =  \(( 2 \cdot 3 )\cdot( 2 \cdot 3 )\)
Torsion order: \(12\)
Leading coefficient: \( 1.26100316318093 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a-1)\) \(5\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((-a^3+a^2+4a-2)\) \(29\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 145.3-a consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.