Properties

Label 4.4.11025.1-20.2-b1
Base field \(\Q(\sqrt{5}, \sqrt{21})\)
Conductor norm \( 20 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{5}, \sqrt{21})\)

Generator \(a\), with minimal polynomial \( x^{4} - 13 x^{2} + 16 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([16, 0, -13, 0, 1]))
 
gp: K = nfinit(Polrev([16, 0, -13, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![16, 0, -13, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(-\frac{1}{8}a^{3}+\frac{17}{8}a+\frac{1}{2}\right){x}{y}+\left(-\frac{1}{8}a^{3}+\frac{1}{2}a^{2}+\frac{13}{8}a-\frac{3}{2}\right){y}={x}^{3}+\left(\frac{1}{2}a^{2}+\frac{1}{2}a-3\right){x}^{2}+\left(114a^{3}+137a^{2}-1327a-1599\right){x}-\frac{1915}{8}a^{3}-\frac{559}{2}a^{2}+\frac{22183}{8}a+\frac{6413}{2}\)
sage: E = EllipticCurve([K([1/2,17/8,0,-1/8]),K([-3,1/2,1/2,0]),K([-3/2,13/8,1/2,-1/8]),K([-1599,-1327,137,114]),K([6413/2,22183/8,-559/2,-1915/8])])
 
gp: E = ellinit([Polrev([1/2,17/8,0,-1/8]),Polrev([-3,1/2,1/2,0]),Polrev([-3/2,13/8,1/2,-1/8]),Polrev([-1599,-1327,137,114]),Polrev([6413/2,22183/8,-559/2,-1915/8])], K);
 
magma: E := EllipticCurve([K![1/2,17/8,0,-1/8],K![-3,1/2,1/2,0],K![-3/2,13/8,1/2,-1/8],K![-1599,-1327,137,114],K![6413/2,22183/8,-559/2,-1915/8]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-1/8a^3+1/2a^2+5/8a-7/2)\) = \((1/8a^3+1/2a^2+3/8a-1/2)\cdot(1/4a^3+1/2a^2-11/4a-6)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 20 \) = \(4\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1/4a^3-2a^2-5/4a+6)\) = \((1/8a^3+1/2a^2+3/8a-1/2)\cdot(1/4a^3+1/2a^2-11/4a-6)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 2500 \) = \(4\cdot5^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1706787717742615889506073}{200} a^{3} + \frac{2909494317952668385276541}{100} a^{2} - \frac{2349435309500436933786543}{200} a - \frac{400499055174224721007173}{10} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{79}{32} a^{3} - \frac{37}{8} a^{2} + \frac{947}{32} a + \frac{521}{8} : \frac{1333}{32} a^{3} + \frac{131}{4} a^{2} - \frac{15201}{32} a - \frac{1479}{4} : 1\right)$
Height \(4.0451606213247928586260012143926262297\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{65}{32} a^{3} + \frac{5}{2} a^{2} - \frac{769}{32} a - \frac{259}{8} : -\frac{99}{32} a^{3} - \frac{7}{2} a^{2} + \frac{1187}{32} a + 41 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 4.0451606213247928586260012143926262297 \)
Period: \( 10.585860643248826299960442534841755676 \)
Tamagawa product: \( 2 \)  =  \(1\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 3.26259098033540 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((1/8a^3+1/2a^2+3/8a-1/2)\) \(4\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((1/4a^3+1/2a^2-11/4a-6)\) \(5\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 20.2-b consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.