Properties

Label 4.4.10025.1-20.1-f1
Base field 4.4.10025.1
Conductor norm \( 20 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 4.4.10025.1

Generator \(a\), with minimal polynomial \( x^{4} - x^{3} - 11 x^{2} + 10 x + 20 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([20, 10, -11, -1, 1]))
 
gp: K = nfinit(Polrev([20, 10, -11, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![20, 10, -11, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{1}{2}a^{3}+\frac{3}{2}a^{2}-\frac{7}{2}a-7\right){x}{y}+{y}={x}^{3}+\left(-a^{2}+a+5\right){x}^{2}+\left(3a^{3}-9a^{2}-2a+16\right){x}-\frac{43}{2}a^{3}+\frac{177}{2}a^{2}-\frac{53}{2}a-149\)
sage: E = EllipticCurve([K([-7,-7/2,3/2,1/2]),K([5,1,-1,0]),K([1,0,0,0]),K([16,-2,-9,3]),K([-149,-53/2,177/2,-43/2])])
 
gp: E = ellinit([Polrev([-7,-7/2,3/2,1/2]),Polrev([5,1,-1,0]),Polrev([1,0,0,0]),Polrev([16,-2,-9,3]),Polrev([-149,-53/2,177/2,-43/2])], K);
 
magma: E := EllipticCurve([K![-7,-7/2,3/2,1/2],K![5,1,-1,0],K![1,0,0,0],K![16,-2,-9,3],K![-149,-53/2,177/2,-43/2]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^3-2a^2+7a+10)\) = \((-2a^3-3a^2+13a+14)\cdot(-a^3-a^2+8a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 20 \) = \(4\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a)\) = \((-2a^3-3a^2+13a+14)\cdot(-a^3-a^2+8a+5)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -20 \) = \(-4\cdot5\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{70419}{20} a^{3} + \frac{175051}{20} a^{2} - \frac{486159}{20} a - 57297 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-a^{2} + a + 3 : a^{3} - a^{2} - 4 a + 1 : 1\right)$
Height \(0.061346900345082104875076302153263705227\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.061346900345082104875076302153263705227 \)
Period: \( 889.33284134233410665980991314407874050 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 2.17958974116033 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-2a^3-3a^2+13a+14)\) \(4\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)
\((-a^3-a^2+8a+5)\) \(5\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 20.1-f consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.