Properties

Label 3.3.1957.1-10.1-b5
Base field 3.3.1957.1
Conductor norm \( 10 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1957.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 9 x + 10 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([10, -9, -1, 1]))
 
gp: K = nfinit(Polrev([10, -9, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![10, -9, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+a{y}={x}^{3}+\left(-a^{2}+a+7\right){x}^{2}+\left(-1869a^{2}-3576a+6419\right){x}-102403a^{2}-195759a+351665\)
sage: E = EllipticCurve([K([1,0,0]),K([7,1,-1]),K([0,1,0]),K([6419,-3576,-1869]),K([351665,-195759,-102403])])
 
gp: E = ellinit([Polrev([1,0,0]),Polrev([7,1,-1]),Polrev([0,1,0]),Polrev([6419,-3576,-1869]),Polrev([351665,-195759,-102403])], K);
 
magma: E := EllipticCurve([K![1,0,0],K![7,1,-1],K![0,1,0],K![6419,-3576,-1869],K![351665,-195759,-102403]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a)\) = \((2,a)\cdot(5,a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 10 \) = \(2\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((34a^2-3a-430)\) = \((2,a)^{4}\cdot(5,a)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 6250000 \) = \(2^{4}\cdot5^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{15046168718351}{6250000} a^{2} + \frac{27908855989139}{6250000} a - \frac{49520546907549}{6250000} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-7 a^{2} - 15 a + 21 : 3 a^{2} + 6 a - 9 : 1\right)$
Height \(0.54224672494448476325646940684708967126\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(16 a^{2} + 29 a - 58 : -8 a^{2} - 15 a + 29 : 1\right)$ $\left(-7 a^{2} - 15 a + \frac{83}{4} : \frac{7}{2} a^{2} + 7 a - \frac{83}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.54224672494448476325646940684708967126 \)
Period: \( 15.278839898704116921333048273906535669 \)
Tamagawa product: \( 4 \)  =  \(2\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 2.2473626093044014725037954734378495952 \)
Analytic order of Ш: \( 16 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2,a)\) \(2\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((5,a)\) \(5\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 10.1-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.