Properties

Label 3.3.148.1-8.1-a5
Base field 3.3.148.1
Conductor norm \( 8 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.148.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -3, -1, 1]))
 
gp: K = nfinit(Polrev([1, -3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -3, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a^{2}-a-2\right){y}={x}^{3}+\left(a^{2}-2a-1\right){x}^{2}+\left(-1157658655878a^{2}-1354560749371a+533461990118\right){x}-1248619261868812725a^{2}-1460992525253670641a+575377649491803209\)
sage: E = EllipticCurve([K([1,1,0]),K([-1,-2,1]),K([-2,-1,1]),K([533461990118,-1354560749371,-1157658655878]),K([575377649491803209,-1460992525253670641,-1248619261868812725])])
 
gp: E = ellinit([Polrev([1,1,0]),Polrev([-1,-2,1]),Polrev([-2,-1,1]),Polrev([533461990118,-1354560749371,-1157658655878]),Polrev([575377649491803209,-1460992525253670641,-1248619261868812725])], K);
 
magma: E := EllipticCurve([K![1,1,0],K![-1,-2,1],K![-2,-1,1],K![533461990118,-1354560749371,-1157658655878],K![575377649491803209,-1460992525253670641,-1248619261868812725]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((a^2-a-2)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 8 \) = \(2^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((4a^2-12)\) = \((a^2-a-2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -256 \) = \(-2^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 2644415465286 a^{2} - 6561307231490 a + 1785326087072 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{968125}{4} a^{2} - \frac{566393}{2} a + \frac{446123}{4} : 383629 a^{2} + \frac{1795521}{4} a - 176780 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 6.9746332562568888059918291281242970224 \)
Tamagawa product: \( 4 \)
Torsion order: \(2\)
Leading coefficient: \( 0.57331132207744951681123408265720299983 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-a-2)\) \(2\) \(4\) \(I_{1}^{*}\) Additive \(-1\) \(3\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 8.1-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.