Properties

Label 3.3.148.1-8.1-a2
Base field 3.3.148.1
Conductor norm \( 8 \)
CM no
Base change no
Q-curve no
Torsion order \( 8 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.148.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -3, -1, 1]))
 
gp: K = nfinit(Polrev([1, -3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -3, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-1\right){x}{y}={x}^{3}+\left(-a^{2}+a+1\right){x}^{2}+\left(-122876240093597390564a^{2}-143775828060934351842a+56622738702290433353\right){x}+1339806177584198660985008156380a^{2}+1567689103089350829411708766103a-617397594907508652287429548778\)
sage: E = EllipticCurve([K([-1,0,1]),K([1,1,-1]),K([0,0,0]),K([56622738702290433353,-143775828060934351842,-122876240093597390564]),K([-617397594907508652287429548778,1567689103089350829411708766103,1339806177584198660985008156380])])
 
gp: E = ellinit([Polrev([-1,0,1]),Polrev([1,1,-1]),Polrev([0,0,0]),Polrev([56622738702290433353,-143775828060934351842,-122876240093597390564]),Polrev([-617397594907508652287429548778,1567689103089350829411708766103,1339806177584198660985008156380])], K);
 
magma: E := EllipticCurve([K![-1,0,1],K![1,1,-1],K![0,0,0],K![56622738702290433353,-143775828060934351842,-122876240093597390564],K![-617397594907508652287429548778,1567689103089350829411708766103,1339806177584198660985008156380]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2)\) = \((a^2-a-2)^{3}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 8 \) = \(2^{3}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((4a^2-12)\) = \((a^2-a-2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 256 \) = \(2^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( 5088 a^{2} + 8224 a + 3904 \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/4\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(\frac{4347879635}{2} a^{2} + \frac{5087395205}{2} a - 1001775658 : -\frac{8063741397}{2} a^{2} - 4717637420 a + 1857930881 : 1\right)$ $\left(4785876661 a^{2} + 5599889607 a - 2205385219 : 594441845638255 a^{2} + 695548370666361 a - 273925416936940 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 223.18826420022044179173853209997750472 \)
Tamagawa product: \( 2 \)
Torsion order: \(8\)
Leading coefficient: \( 0.57331132207744951681123408265720299983 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-a-2)\) \(2\) \(2\) \(I_{1}^{*}\) Additive \(-1\) \(3\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 8.1-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.