Properties

Label 3.3.148.1-19.1-b3
Base field 3.3.148.1
Conductor norm \( 19 \)
CM no
Base change no
Q-curve no
Torsion order \( 10 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.148.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -3, -1, 1]))
 
gp: K = nfinit(Polrev([1, -3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -3, -1, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^{3}-a{x}^{2}+\left(-2423600a^{2}-2835822a+1116822\right){x}+78861696894a^{2}+92275005848a-36340347438\)
sage: E = EllipticCurve([K([0,0,0]),K([0,-1,0]),K([1,0,0]),K([1116822,-2835822,-2423600]),K([-36340347438,92275005848,78861696894])])
 
gp: E = ellinit([Polrev([0,0,0]),Polrev([0,-1,0]),Polrev([1,0,0]),Polrev([1116822,-2835822,-2423600]),Polrev([-36340347438,92275005848,78861696894])], K);
 
magma: E := EllipticCurve([K![0,0,0],K![0,-1,0],K![1,0,0],K![1116822,-2835822,-2423600],K![-36340347438,92275005848,78861696894]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2-a-1)\) = \((-a^2-a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 19 \) = \(19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((a^2-2a-4)\) = \((-a^2-a-1)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -19 \) = \(-19\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{2985984}{19} a^{2} + \frac{2048000}{19} a + \frac{9617408}{19} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(3149 a^{2} + 3685 a - 1451 : 464699 a^{2} + 543738 a - 214139 : 1\right)$
Height \(0.50593634054814989974306370159048447590\)
Torsion structure: \(\Z/10\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(345 a^{2} + 404 a - 159 : -105170 a^{2} - 123058 a + 48463 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.50593634054814989974306370159048447590 \)
Period: \( 363.37915711902769894025370296219851104 \)
Tamagawa product: \( 1 \)
Torsion order: \(10\)
Leading coefficient: \( 0.45336322123837360534242574207699263494 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2-a-1)\) \(19\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(5\) 5B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 5 and 10.
Its isogeny class 19.1-b consists of curves linked by isogenies of degrees dividing 10.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.