Properties

Label 3.3.148.1-19.1-a2
Base field 3.3.148.1
Conductor norm \( 19 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.148.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} - 3 x + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -3, -1, 1]))
 
gp: K = nfinit(Polrev([1, -3, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -3, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-a-2\right){x}{y}+a{y}={x}^{3}-{x}^{2}+\left(-24578a^{2}-28759a+11326\right){x}-2418130a^{2}-2829421a+1114301\)
sage: E = EllipticCurve([K([-2,-1,1]),K([-1,0,0]),K([0,1,0]),K([11326,-28759,-24578]),K([1114301,-2829421,-2418130])])
 
gp: E = ellinit([Polrev([-2,-1,1]),Polrev([-1,0,0]),Polrev([0,1,0]),Polrev([11326,-28759,-24578]),Polrev([1114301,-2829421,-2418130])], K);
 
magma: E := EllipticCurve([K![-2,-1,1],K![-1,0,0],K![0,1,0],K![11326,-28759,-24578],K![1114301,-2829421,-2418130]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a^2-a-1)\) = \((-a^2-a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 19 \) = \(19\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((79a^2+147a-441)\) = \((-a^2-a-1)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -47045881 \) = \(-19^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{15636831814539296}{47045881} a^{2} - \frac{38648046941482112}{47045881} a + \frac{10231591814174352}{47045881} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{63}{4} a^{2} - 18 a + \frac{31}{4} : 4 a^{2} + \frac{9}{2} a - \frac{5}{4} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 5.4867074010896355550842192086664296387 \)
Tamagawa product: \( 6 \)
Torsion order: \(2\)
Leading coefficient: \( 0.67650685528495865879609303754640985439 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a^2-a-1)\) \(19\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 19.1-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.