Properties

Label 3.3.1129.1-27.1-c6
Base field 3.3.1129.1
Conductor norm \( 27 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1129.1

Generator \(a\), with minimal polynomial \( x^{3} - 7 x - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, -7, 0, 1]))
 
gp: K = nfinit(Polrev([-3, -7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, -7, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-5\right){x}{y}+\left(a^{2}-a-4\right){y}={x}^{3}+\left(a^{2}-a-5\right){x}^{2}+\left(1998a^{2}+5667a+2101\right){x}+78186a^{2}+221930a+82632\)
sage: E = EllipticCurve([K([-5,0,1]),K([-5,-1,1]),K([-4,-1,1]),K([2101,5667,1998]),K([82632,221930,78186])])
 
gp: E = ellinit([Polrev([-5,0,1]),Polrev([-5,-1,1]),Polrev([-4,-1,1]),Polrev([2101,5667,1998]),Polrev([82632,221930,78186])], K);
 
magma: E := EllipticCurve([K![-5,0,1],K![-5,-1,1],K![-4,-1,1],K![2101,5667,1998],K![82632,221930,78186]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((3)\) = \((a)\cdot(a+1)\cdot(a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27 \) = \(3\cdot3\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-9a^2-99a+27)\) = \((a)^{4}\cdot(a+1)^{2}\cdot(a+2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -4782969 \) = \(-3^{4}\cdot3^{2}\cdot3^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{113624322151340515972}{6561} a^{2} + \frac{50086477418823404924}{6561} a + \frac{257763916523688686789}{2187} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{9}{4} a^{2} - \frac{23}{4} a - \frac{13}{4} : \frac{27}{8} a^{2} + \frac{77}{8} a + \frac{5}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 4.8475139972978616308729282906280478880 \)
Tamagawa product: \( 8 \)  =  \(2\cdot2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 1.1541495532942337502502940948394420442 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(3\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((a+1)\) \(3\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((a+2)\) \(3\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 27.1-c consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.