Properties

Label 3.3.1129.1-27.1-a3
Base field 3.3.1129.1
Conductor norm \( 27 \)
CM no
Base change no
Q-curve no
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1129.1

Generator \(a\), with minimal polynomial \( x^{3} - 7 x - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, -7, 0, 1]))
 
gp: K = nfinit(Polrev([-3, -7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, -7, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a^{2}-2a-5\right){x}^{2}+\left(-21a^{2}-27a-9\right){x}-119a^{2}-128a-24\)
sage: E = EllipticCurve([K([1,0,0]),K([-5,-2,1]),K([1,1,0]),K([-9,-27,-21]),K([-24,-128,-119])])
 
gp: E = ellinit([Polrev([1,0,0]),Polrev([-5,-2,1]),Polrev([1,1,0]),Polrev([-9,-27,-21]),Polrev([-24,-128,-119])], K);
 
magma: E := EllipticCurve([K![1,0,0],K![-5,-2,1],K![1,1,0],K![-9,-27,-21],K![-24,-128,-119]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((3)\) = \((a)\cdot(a+1)\cdot(a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 27 \) = \(3\cdot3\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((4599a^2+1359a-33345)\) = \((a)^{16}\cdot(a+1)^{8}\cdot(a+2)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 2541865828329 \) = \(3^{16}\cdot3^{8}\cdot3^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2261405226768644}{43046721} a^{2} - \frac{1807175611576916}{14348907} a - \frac{2828449287531743}{43046721} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(5 a + 5 : -3 a - 3 : 1\right)$ $\left(-3 a + 1 : a - 1 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 9.4639701161438429772277734536848195849 \)
Tamagawa product: \( 8 \)  =  \(2\cdot2\cdot2\)
Torsion order: \(4\)
Leading coefficient: \( 2.2532863005709906654835050771645067040 \)
Analytic order of Ш: \( 16 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(3\) \(2\) \(I_{16}\) Non-split multiplicative \(1\) \(1\) \(16\) \(16\)
\((a+1)\) \(3\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)
\((a+2)\) \(3\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 27.1-a consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.