Properties

Label 3.3.1129.1-17.1-a1
Base field 3.3.1129.1
Conductor norm \( 17 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.3.1129.1

Generator \(a\), with minimal polynomial \( x^{3} - 7 x - 3 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-3, -7, 0, 1]))
 
gp: K = nfinit(Polrev([-3, -7, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, -7, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}-4\right){x}{y}+\left(a^{2}-4\right){y}={x}^{3}+\left(-a^{2}+a+4\right){x}^{2}+\left(4a^{2}-14a+2\right){x}-47a^{2}+109a+66\)
sage: E = EllipticCurve([K([-4,0,1]),K([4,1,-1]),K([-4,0,1]),K([2,-14,4]),K([66,109,-47])])
 
gp: E = ellinit([Polrev([-4,0,1]),Polrev([4,1,-1]),Polrev([-4,0,1]),Polrev([2,-14,4]),Polrev([66,109,-47])], K);
 
magma: E := EllipticCurve([K![-4,0,1],K![4,1,-1],K![-4,0,1],K![2,-14,4],K![66,109,-47]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a^2-a-4)\) = \((a^2-a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 17 \) = \(17\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a^2+a+4)\) = \((a^2-a-4)\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 17 \) = \(17\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{635333}{17} a^{2} - \frac{1625995}{17} a - \frac{242032}{17} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(a^{2} - 2 a - 3 : a^{2} - 2 a - 3 : 1\right)$
Height \(0.24900975850832048004696454331003804435\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.24900975850832048004696454331003804435 \)
Period: \( 169.88090879658792436055452479208514337 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \( 3.7768977407837241264786656144489671993 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2-a-4)\) \(17\) \(1\) \(I_{1}\) Non-split multiplicative \(1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 17.1-a consists of curves linked by isogenies of degree 3.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.