Properties

Label 3.1.23.1-223.3-A6
Base field 3.1.23.1
Conductor norm \( 223 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.1.23.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, -1, 1]))
 
gp: K = nfinit(Polrev([1, 0, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a+1\right){x}{y}={x}^{3}+\left(-a^{2}-a-1\right){x}^{2}+\left(2058a^{2}-1279a-2138\right){x}-53646a^{2}+19860a+45562\)
sage: E = EllipticCurve([K([1,1,1]),K([-1,-1,-1]),K([0,0,0]),K([-2138,-1279,2058]),K([45562,19860,-53646])])
 
gp: E = ellinit([Polrev([1,1,1]),Polrev([-1,-1,-1]),Polrev([0,0,0]),Polrev([-2138,-1279,2058]),Polrev([45562,19860,-53646])], K);
 
magma: E := EllipticCurve([K![1,1,1],K![-1,-1,-1],K![0,0,0],K![-2138,-1279,2058],K![45562,19860,-53646]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((2a^2+4a-5)\) = \((2a^2+4a-5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 223 \) = \(223\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-21a^2+65a-49)\) = \((2a^2+4a-5)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -49729 \) = \(-223^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2398483247031296383}{49729} a^{2} - \frac{5215465637566830606}{49729} a - \frac{5303790920318513126}{49729} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{33}{2} a^{2} + \frac{67}{4} a + \frac{43}{2} : -\frac{11}{4} a^{2} - \frac{219}{8} a - \frac{151}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2.4109210122771770342161274634049965959 \)
Tamagawa product: \( 2 \)
Torsion order: \(2\)
Leading coefficient: \( 0.50271178221286511947531755797058953629 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2a^2+4a-5)\) \(223\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 223.3-A consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.