Properties

Label 3.1.23.1-185.1-A2
Base field 3.1.23.1
Conductor norm \( 185 \)
CM no
Base change no
Q-curve no
Torsion order \( 12 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field 3.1.23.1

Generator \(a\), with minimal polynomial \( x^{3} - x^{2} + 1 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, 0, -1, 1]))
 
gp: K = nfinit(Polrev([1, 0, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a^{2}+a\right){x}{y}+\left(a^{2}+a\right){y}={x}^{3}-a^{2}{x}^{2}+\left(-2a^{2}+a-4\right){x}-a^{2}+a-3\)
sage: E = EllipticCurve([K([0,1,1]),K([0,0,-1]),K([0,1,1]),K([-4,1,-2]),K([-3,1,-1])])
 
gp: E = ellinit([Polrev([0,1,1]),Polrev([0,0,-1]),Polrev([0,1,1]),Polrev([-4,1,-2]),Polrev([-3,1,-1])], K);
 
magma: E := EllipticCurve([K![0,1,1],K![0,0,-1],K![0,1,1],K![-4,1,-2],K![-3,1,-1]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-6a^2+4a+1)\) = \((a^2+1)\cdot(3a^2-a+1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 185 \) = \(5\cdot37\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((323a^2-613a+324)\) = \((a^2+1)^{6}\cdot(3a^2-a+1)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 21390625 \) = \(5^{6}\cdot37^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{1489529038113}{21390625} a^{2} - \frac{1401973775442}{21390625} a - \frac{1385370674639}{21390625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\oplus\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-1 : 0 : 1\right)$ $\left(5 a^{2} - 9 a + 6 : -18 a^{2} + 32 a - 24 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 13.954736302709437195867512659512975165 \)
Tamagawa product: \( 12 \)  =  \(( 2 \cdot 3 )\cdot2\)
Torsion order: \(12\)
Leading coefficient: \( 0.48496061058007469531323598147061958439 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a^2+1)\) \(5\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((3a^2-a+1)\) \(37\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 185.1-A consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.