Properties

Label 2.2.8.1-1922.1-c5
Base field \(\Q(\sqrt{2}) \)
Conductor norm \( 1922 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{2}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 2 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-2, 0, 1]))
 
gp: K = nfinit(Polrev([-2, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+\left(-165a-111\right){x}-818a-1207\)
sage: E = EllipticCurve([K([1,0]),K([-1,0]),K([1,0]),K([-111,-165]),K([-1207,-818])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([-1,0]),Polrev([1,0]),Polrev([-111,-165]),Polrev([-1207,-818])], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,0],K![1,0],K![-111,-165],K![-1207,-818]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((31a)\) = \((a)\cdot(-4a-1)\cdot(4a-1)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 1922 \) = \(2\cdot31\cdot31\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((46713249a-52201520)\) = \((a)\cdot(-4a-1)^{2}\cdot(4a-1)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -1639256573961602 \) = \(-2\cdot31^{2}\cdot31^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{194892158021341473}{1705782074882} a + \frac{139281368709237480}{852891037441} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{41}{2} a + \frac{63}{2} : \frac{561}{4} a + 213 : 1\right)$
Height \(4.0736738319965668260542313586526095109\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-4 a - \frac{21}{4} : 2 a + \frac{17}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 4.0736738319965668260542313586526095109 \)
Period: \( 1.2293058519394294837054559103318366810 \)
Tamagawa product: \( 4 \)  =  \(1\cdot2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 3.5410430318336561767373780957863814700 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a)\) \(2\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((-4a-1)\) \(31\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((4a-1)\) \(31\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 1922.1-c consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.