Properties

Label 2.2.76.1-24.1-a1
Base field \(\Q(\sqrt{19}) \)
Conductor norm \( 24 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{19}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 19 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-19, 0, 1]))
 
gp: K = nfinit(Polrev([-19, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-19, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){y}={x}^{3}+{x}^{2}+\left(-52701a-229718\right){x}-17439999a-76019196\)
sage: E = EllipticCurve([K([0,0]),K([1,0]),K([1,1]),K([-229718,-52701]),K([-76019196,-17439999])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([1,0]),Polrev([1,1]),Polrev([-229718,-52701]),Polrev([-76019196,-17439999])], K);
 
magma: E := EllipticCurve([K![0,0],K![1,0],K![1,1],K![-229718,-52701],K![-76019196,-17439999]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2a+10)\) = \((-3a+13)^{3}\cdot(-a-4)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 24 \) = \(2^{3}\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((3328a-16940)\) = \((-3a+13)^{4}\cdot(-a-4)^{14}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 76527504 \) = \(2^{4}\cdot3^{14}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2379806720}{4782969} a - \frac{24019195904}{4782969} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(756 a + 3295 : 61032 a + 266034 : 1\right)$
Height \(0.060578918543290076552750217676427415522\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.060578918543290076552750217676427415522 \)
Period: \( 5.9569897198041091623064957101963900675 \)
Tamagawa product: \( 28 \)  =  \(2\cdot( 2 \cdot 7 )\)
Torsion order: \(1\)
Leading coefficient: \( 2.3180862852881006144991548777006416524 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-3a+13)\) \(2\) \(2\) \(III\) Additive \(1\) \(3\) \(4\) \(0\)
\((-a-4)\) \(3\) \(14\) \(I_{14}\) Split multiplicative \(-1\) \(1\) \(14\) \(14\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 24.1-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.