Properties

Label 2.2.65.1-100.1-h1
Base field \(\Q(\sqrt{65}) \)
Conductor norm \( 100 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{65}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 16 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-16, -1, 1]))
 
gp: K = nfinit(Polrev([-16, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-16, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}-126{x}-552\)
sage: E = EllipticCurve([K([1,0]),K([0,0]),K([1,0]),K([-126,0]),K([-552,0])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,0]),Polrev([1,0]),Polrev([-126,0]),Polrev([-552,0])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,0],K![1,0],K![-126,0],K![-552,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((10)\) = \((2,a)\cdot(2,a+1)\cdot(5,a+2)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 100 \) = \(2\cdot2\cdot5^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-5000)\) = \((2,a)^{3}\cdot(2,a+1)^{3}\cdot(5,a+2)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 25000000 \) = \(2^{3}\cdot2^{3}\cdot5^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{349938025}{8} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{5712247}{151380} : \frac{1804279183}{32925150} a - \frac{6159236111}{131700600} : 1\right)$
Height \(15.718222828814880728596305602379765516\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 15.718222828814880728596305602379765516 \)
Period: \( 0.50860429073562285690115527522121051361 \)
Tamagawa product: \( 1 \)  =  \(1\cdot1\cdot1\)
Torsion order: \(1\)
Leading coefficient: \( 1.9831555435351811424346173517446332700 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2,a)\) \(2\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)
\((2,a+1)\) \(2\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)
\((5,a+2)\) \(5\) \(1\) \(IV^{*}\) Additive \(-1\) \(2\) \(8\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3B.1.2
\(5\) 5B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3, 5 and 15.
Its isogeny class 100.1-h consists of curves linked by isogenies of degrees dividing 15.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 50.a1
\(\Q\) 8450.d1