Properties

Label 2.2.60.1-30.1-b7
Base field \(\Q(\sqrt{15}) \)
Conductor \((30,a+15)\)
Conductor norm \( 30 \)
CM no
Base change yes: 30.a4,3600.f4
Q-curve yes
Torsion order \( 6 \)
Rank \( 1 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{15}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 15 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-15, 0, 1]))
 
gp: K = nfinit(Pol(Vecrev([-15, 0, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-15, 0, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}-289{x}+1862\)
sage: E = EllipticCurve([K([1,0]),K([0,0]),K([1,0]),K([-289,0]),K([1862,0])])
 
gp: E = ellinit([Pol(Vecrev([1,0])),Pol(Vecrev([0,0])),Pol(Vecrev([1,0])),Pol(Vecrev([-289,0])),Pol(Vecrev([1862,0]))], K);
 
magma: E := EllipticCurve([K![1,0],K![0,0],K![1,0],K![-289,0],K![1862,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((30,a+15)\) = \((2,a+1)\cdot(3,a)\cdot(5,a)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 30 \) = \(2\cdot3\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((33750)\) = \((2,a+1)^{2}\cdot(3,a)^{6}\cdot(5,a)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 1139062500 \) = \(2^{2}\cdot3^{6}\cdot5^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{2656166199049}{33750} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{23}{3} : -\frac{25}{9} a - \frac{13}{3} : 1\right)$
Height \(0.921859192514105\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(16 : 29 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.921859192514105 \)
Period: \( 11.2355571326321 \)
Tamagawa product: \( 24 \)  =  \(2\cdot( 2 \cdot 3 )\cdot2\)
Torsion order: \(6\)
Leading coefficient: \( 1.78288082680533 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((2,a+1)\) \(2\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\((3,a)\) \(3\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)
\((5,a)\) \(5\) \(2\) \(I_{8}\) Non-split multiplicative \(1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 30.1-b consists of curves linked by isogenies of degrees dividing 12.

Base change

This curve is the base change of elliptic curves 30.a4, 3600.f4, defined over \(\Q\), so it is also a \(\Q\)-curve.