Properties

Label 2.2.53.1-7.2-a2
Base field \(\Q(\sqrt{53}) \)
Conductor \((-a + 3)\)
Conductor norm \( 7 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 1 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{53}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 13 \); class number \(1\).

sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x - 13)
 
gp: K = nfinit(a^2 - a - 13);
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-13, -1, 1]);
 

Weierstrass equation

\(y^2+ay=x^{3}+ax^{2}+\left(-351a-2730\right)x-11879a-60953\)
sage: E = EllipticCurve(K, [0, a, a, -351*a - 2730, -11879*a - 60953])
 
gp: E = ellinit([0, a, a, -351*a - 2730, -11879*a - 60953],K)
 
magma: E := ChangeRing(EllipticCurve([0, a, a, -351*a - 2730, -11879*a - 60953]),K);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a + 3)\) = \( \left(-a + 3\right) \)
sage: E.conductor()
 
magma: Conductor(E);
 
Conductor norm: \( 7 \) = \( 7 \)
sage: E.conductor().norm()
 
magma: Norm(Conductor(E));
 
Discriminant: \((-a + 3)\) = \( \left(-a + 3\right) \)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 7 \) = \( 7 \)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{195338235078135808}{7} a - \frac{808691822475743232}{7} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{2576031932596611}{20727095500804} a + \frac{88756132690244461}{186543859507236} : -\frac{494158795969594300917247}{141546433711052058612} a + \frac{36819918682936564894690949}{2547835806798937055016} : 1\right)$
Height \(21.0890912353338\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 21.0890912353338 \)
Period: \( 0.222906563466421 \)
Tamagawa product: \( 1 \)
Torsion order: \(1\)
Leading coefficient: \(1.29143568583212\)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a + 3\right) \) \(7\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(7\) 7B.1.3

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 7.
Its isogeny class 7.2-a consists of curves linked by isogenies of degree 7.

Base change

This curve is not the base change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.