Properties

Base field \(\Q(\sqrt{53}) \)
Label 2.2.53.1-4.1-b
Conductor 4.1
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{53}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 13 \); class number \(1\).

Elliptic curves in class 4.1-b over \(\Q(\sqrt{53}) \)

Isogeny class 4.1-b contains 2 curves linked by isogenies of degree 5.

Curve label Weierstrass Coefficients
4.1-b1 \( \bigl[a + 1\) , \( -a + 1\) , \( 1\) , \( 311 a - 1287\) , \( 6283 a - 26012\bigr] \)
4.1-b2 \( \bigl[a\) , \( 1\) , \( 1\) , \( 3 a + 15\) , \( 5 a + 17\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph