Properties

Label 2.2.53.1-28.1-c1
Base field \(\Q(\sqrt{53}) \)
Conductor \((-2 a - 4)\)
Conductor norm \( 28 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{53}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 13 \); class number \(1\).

sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x - 13)
 
gp: K = nfinit(a^2 - a - 13);
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-13, -1, 1]);
 

Weierstrass equation

\(y^2+\left(a+1\right)xy+ay=x^{3}+ax^{2}+\left(3a+6\right)x+3a+7\)
sage: E = EllipticCurve(K, [a + 1, a, a, 3*a + 6, 3*a + 7])
 
gp: E = ellinit([a + 1, a, a, 3*a + 6, 3*a + 7],K)
 
magma: E := ChangeRing(EllipticCurve([a + 1, a, a, 3*a + 6, 3*a + 7]),K);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-2 a - 4)\) = \( \left(2\right) \cdot \left(-a - 2\right) \)
sage: E.conductor()
 
magma: Conductor(E);
 
Conductor norm: \( 28 \) = \( 4 \cdot 7 \)
sage: E.conductor().norm()
 
magma: Norm(Conductor(E));
 
Discriminant: \((-48 a - 320)\) = \( \left(2\right)^{4} \cdot \left(-a - 2\right)^{3} \)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 87808 \) = \( 4^{4} \cdot 7^{3} \)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{3528949}{686} a - \frac{20337669}{5488} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-a - 3 : 2 a + 8 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 19.4280074788070 \)
Tamagawa product: \( 2 \)  =  \(1\cdot2\)
Torsion order: \(2\)
Leading coefficient: \(1.33432103184414\)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a - 2\right) \) \(7\) \(1\) \(I_{3}\) Non-split multiplicative \(1\) \(1\) \(3\) \(3\)
\( \left(2\right) \) \(4\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 28.1-c consists of curves linked by isogenies of degree 2.

Base change

This curve is not the base change of an elliptic curve defined over \(\Q\). It is not a \(\Q\)-curve.