Properties

Base field \(\Q(\sqrt{53}) \)
Label 2.2.53.1-17.2-a
Conductor 17.2
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{53}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 13 \); class number \(1\).

Elliptic curves in class 17.2-a over \(\Q(\sqrt{53}) \)

Isogeny class 17.2-a contains 2 curves linked by isogenies of degree 2.

Curve label Weierstrass Coefficients
17.2-a1 \( \bigl[1\) , \( -1\) , \( 0\) , \( a - 4\) , \( 0\bigr] \)
17.2-a2 \( \bigl[1\) , \( -1\) , \( 0\) , \( -4 a + 16\) , \( 3 a - 12\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph