Properties

Base field \(\Q(\sqrt{5}) \)
Label 2.2.5.1-320.1-a
Conductor 320.1
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{5}) \)

Generator \(\phi\), with minimal polynomial \( x^{2} - x - 1 \); class number \(1\).

Elliptic curves in class 320.1-a over \(\Q(\sqrt{5}) \)

Isogeny class 320.1-a contains 8 curves linked by isogenies of degrees dividing 16.

Curve label Weierstrass Coefficients
320.1-a1 \( \bigl[0\) , \( 0\) , \( 0\) , \( -201 \phi - 374\) , \( -3072 \phi - 3418\bigr] \)
320.1-a2 \( \bigl[0\) , \( 0\) , \( 0\) , \( 9 \phi + 1\) , \( 36 \phi + 26\bigr] \)
320.1-a3 \( \bigl[0\) , \( 0\) , \( 0\) , \( 13\) , \( -34\bigr] \)
320.1-a4 \( \bigl[0\) , \( 0\) , \( 0\) , \( -7\) , \( -6\bigr] \)
320.1-a5 \( \bigl[0\) , \( 0\) , \( 0\) , \( -2\) , \( 1\bigr] \)
320.1-a6 \( \bigl[0\) , \( 0\) , \( 0\) , \( -107\) , \( -426\bigr] \)
320.1-a7 \( \bigl[0\) , \( 0\) , \( 0\) , \( -9 \phi + 10\) , \( -36 \phi + 62\bigr] \)
320.1-a8 \( \bigl[0\) , \( 0\) , \( 0\) , \( 201 \phi - 575\) , \( 3072 \phi - 6490\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrrrrrr} 1 & 16 & 8 & 4 & 8 & 2 & 16 & 4 \\ 16 & 1 & 8 & 4 & 2 & 8 & 4 & 16 \\ 8 & 8 & 1 & 2 & 4 & 4 & 8 & 8 \\ 4 & 4 & 2 & 1 & 2 & 2 & 4 & 4 \\ 8 & 2 & 4 & 2 & 1 & 4 & 2 & 8 \\ 2 & 8 & 4 & 2 & 4 & 1 & 8 & 2 \\ 16 & 4 & 8 & 4 & 2 & 8 & 1 & 16 \\ 4 & 16 & 8 & 4 & 8 & 2 & 16 & 1 \end{array}\right)\)

Isogeny graph