Properties

Base field \(\Q(\sqrt{5}) \)
Label 2.2.5.1-164.1-a
Conductor 164.1
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{5}) \)

Generator \(\phi\), with minimal polynomial \( x^{2} - x - 1 \); class number \(1\).

Elliptic curves in class 164.1-a over \(\Q(\sqrt{5}) \)

Isogeny class 164.1-a contains 2 curves linked by isogenies of degree 2.

Curve label Weierstrass Coefficients
164.1-a1 \( \bigl[\phi\) , \( -1\) , \( 0\) , \( -\phi - 1\) , \( \phi - 3\bigr] \)
164.1-a2 \( \bigl[\phi\) , \( -1\) , \( 0\) , \( -\phi - 41\) , \( -7 \phi - 91\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph