Properties

Base field \(\Q(\sqrt{5}) \)
Label 2.2.5.1-1156.1-b
Conductor 1156.1
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{5}) \)

Generator \(\phi\), with minimal polynomial \( x^{2} - x - 1 \); class number \(1\).

Elliptic curves in class 1156.1-b over \(\Q(\sqrt{5}) \)

Isogeny class 1156.1-b contains 4 curves linked by isogenies of degrees dividing 6.

Curve label Weierstrass Coefficients
1156.1-b1 \( \bigl[1\) , \( 0\) , \( 0\) , \( -3\) , \( 1\bigr] \)
1156.1-b2 \( \bigl[1\) , \( 0\) , \( 0\) , \( -113\) , \( -329\bigr] \)
1156.1-b3 \( \bigl[1\) , \( 0\) , \( 0\) , \( -43\) , \( 105\bigr] \)
1156.1-b4 \( \bigl[1\) , \( 0\) , \( 0\) , \( -103\) , \( -411\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 6 & 2 & 3 \\ 6 & 1 & 3 & 2 \\ 2 & 3 & 1 & 6 \\ 3 & 2 & 6 & 1 \end{array}\right)\)

Isogeny graph