Properties

Base field \(\Q(\sqrt{11}) \)
Label 2.2.44.1-200.1-j
Conductor 200.1
Rank not recorded

Related objects

Learn more about

Base field \(\Q(\sqrt{11}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 11 \); class number \(1\).

Elliptic curves in class 200.1-j over \(\Q(\sqrt{11}) \)

Isogeny class 200.1-j contains 4 curves linked by isogenies of degrees dividing 4.

Curve label Weierstrass Coefficients
200.1-j1 \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 198 a + 658\) , \( -4566 a - 15144\bigr] \)
200.1-j2 \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -102 a - 337\) , \( -1174 a - 3894\bigr] \)
200.1-j3 \( \bigl[0\) , \( 0\) , \( 0\) , \( -2\) , \( 1\bigr] \)
200.1-j4 \( \bigl[a + 1\) , \( a\) , \( 0\) , \( -1602 a - 5312\) , \( -68004 a - 225544\bigr] \)

Rank

Rank not yet determined.

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph