Properties

Base field \(\Q(\sqrt{33}) \)
Label 2.2.33.1-324.1-h
Conductor 324.1
Rank not recorded

Related objects

Learn more about

Base field \(\Q(\sqrt{33}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 8 \); class number \(1\).

Elliptic curves in class 324.1-h over \(\Q(\sqrt{33}) \)

Isogeny class 324.1-h contains 3 curves linked by isogenies of degrees dividing 9.

Curve label Weierstrass Coefficients
324.1-h1 \( \bigl[1\) , \( -1\) , \( 0\) , \( -3\) , \( 3\bigr] \)
324.1-h2 \( \bigl[1\) , \( -1\) , \( 0\) , \( -5037 a - 11949\) , \( -436017 a - 1034355\bigr] \)
324.1-h3 \( \bigl[1\) , \( -1\) , \( 0\) , \( 483 a + 1146\) , \( 6753 a + 16020\bigr] \)

Rank

Rank not yet determined.

Isogeny matrix

\(\left(\begin{array}{rrr} 1 & 9 & 3 \\ 9 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right)\)

Isogeny graph