Properties

Label 2.2.33.1-300.1-g3
Base field \(\Q(\sqrt{33}) \)
Conductor norm \( 300 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 6 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{33}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 8 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-8, -1, 1]))
 
gp: K = nfinit(Polrev([-8, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-8, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-166895a-395921\right){x}+8303649a+19698591\)
sage: E = EllipticCurve([K([1,0]),K([1,1]),K([1,1]),K([-395921,-166895]),K([19698591,8303649])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,1]),Polrev([1,1]),Polrev([-395921,-166895]),Polrev([19698591,8303649])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,1],K![1,1],K![-395921,-166895],K![19698591,8303649]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-20a+70)\) = \((-a-2)\cdot(-a+3)\cdot(-2a+7)\cdot(5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 300 \) = \(2\cdot2\cdot3\cdot25\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((5859375000)\) = \((-a-2)^{3}\cdot(-a+3)^{3}\cdot(-2a+7)^{2}\cdot(5)^{12}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 34332275390625000000 \) = \(2^{3}\cdot2^{3}\cdot3^{2}\cdot25^{12}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{10316097499609}{5859375000} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-25 a - 59 : 2362 a + 5604 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.3418722835546968520385922310871675988 \)
Tamagawa product: \( 216 \)  =  \(3\cdot3\cdot2\cdot( 2^{2} \cdot 3 )\)
Torsion order: \(6\)
Leading coefficient: \( 5.6061595611149071858082175526252627521 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a-2)\) \(2\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\((-a+3)\) \(2\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\((-2a+7)\) \(3\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((5)\) \(25\) \(12\) \(I_{12}\) Split multiplicative \(-1\) \(1\) \(12\) \(12\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 300.1-g consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 90.c2
\(\Q\) 3630.w2