Properties

Label 2.2.24.1-450.2-l2
Base field \(\Q(\sqrt{6}) \)
Conductor norm \( 450 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{6}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 6 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-6, 0, 1]))
 
gp: K = nfinit(Polrev([-6, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-6, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(62a-158\right){x}-2465a+6035\)
sage: E = EllipticCurve([K([1,1]),K([-1,-1]),K([1,1]),K([-158,62]),K([6035,-2465])])
 
gp: E = ellinit([Polrev([1,1]),Polrev([-1,-1]),Polrev([1,1]),Polrev([-158,62]),Polrev([6035,-2465])], K);
 
magma: E := EllipticCurve([K![1,1],K![-1,-1],K![1,1],K![-158,62],K![6035,-2465]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-9a+6)\) = \((-a+2)\cdot(a+3)^{2}\cdot(-a-1)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 450 \) = \(2\cdot3^{2}\cdot5^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-20898a-118368)\) = \((-a+2)^{3}\cdot(a+3)^{6}\cdot(-a-1)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 11390625000 \) = \(2^{3}\cdot3^{6}\cdot5^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1061271}{500} a - \frac{656416}{125} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 3.1018192562024145863822760268585834509 \)
Tamagawa product: \( 6 \)  =  \(3\cdot1\cdot2\)
Torsion order: \(1\)
Leading coefficient: \( 3.7989372260175806554994396595188769590 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+2)\) \(2\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\((a+3)\) \(3\) \(1\) \(I_0^{*}\) Additive \(-1\) \(2\) \(6\) \(0\)
\((-a-1)\) \(5\) \(2\) \(I_{3}^{*}\) Additive \(1\) \(2\) \(9\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(3\) 3Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 3.
Its isogeny class 450.2-l consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.