Properties

Label 2.2.24.1-150.1-e7
Base field \(\Q(\sqrt{6}) \)
Conductor \((-5 a)\)
Conductor norm \( 150 \)
CM no
Base change yes: 30.a6,2880.q6
Q-curve yes
Torsion order \( 12 \)
Rank \( 1 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{6}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 6 \); class number \(1\).

sage: x = polygen(QQ); K.<a> = NumberField(x^2 - 6)
 
gp: K = nfinit(a^2 - 6);
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-6, 0, 1]);
 

Weierstrass equation

\(y^2+xy+y=x^{3}-19x+26\)
sage: E = EllipticCurve(K, [1, 0, 1, -19, 26])
 
gp: E = ellinit([1, 0, 1, -19, 26],K)
 
magma: E := ChangeRing(EllipticCurve([1, 0, 1, -19, 26]),K);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-5 a)\) = \( \left(-a + 2\right) \cdot \left(a + 3\right) \cdot \left(-a - 1\right) \cdot \left(-a + 1\right) \)
sage: E.conductor()
 
magma: Conductor(E);
 
Conductor norm: \( 150 \) = \( 2 \cdot 3 \cdot 5^{2} \)
sage: E.conductor().norm()
 
magma: Norm(Conductor(E));
 
Discriminant: \((72900)\) = \( \left(-a + 2\right)^{4} \cdot \left(a + 3\right)^{12} \cdot \left(-a - 1\right)^{2} \cdot \left(-a + 1\right)^{2} \)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 5314410000 \) = \( 2^{4} \cdot 3^{12} \cdot 5^{4} \)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{702595369}{72900} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{3}{2} a - \frac{1}{2} : -\frac{3}{4} a - \frac{5}{2} : 1\right)$
Height \(0.627093212150540\)
Torsion structure: \(\Z/2\Z\times\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(1 : 2 : 1\right)$ $\left(\frac{7}{4} : -\frac{11}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 0.627093212150540 \)
Period: \( 11.2355571326321 \)
Tamagawa product: \( 96 \)  =  \(2\cdot( 2^{2} \cdot 3 )\cdot2\cdot2\)
Torsion order: \(12\)
Leading coefficient: \(1.91760797893023\)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a + 2\right) \) \(2\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\( \left(a + 3\right) \) \(3\) \(12\) \(I_{12}\) Split multiplicative \(-1\) \(1\) \(12\) \(12\)
\( \left(-a - 1\right) \) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)
\( \left(-a + 1\right) \) \(5\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 150.1-e consists of curves linked by isogenies of degrees dividing 24.

Base change

This curve is the base change of elliptic curves 30.a6, 2880.q6, defined over \(\Q\), so it is also a \(\Q\)-curve.