Properties

Base field \(\Q(\sqrt{6}) \)
Label 2.2.24.1-150.1-e
Conductor 150.1
Rank not recorded

Related objects

Learn more about

Base field \(\Q(\sqrt{6}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 6 \); class number \(1\).

Elliptic curves in class 150.1-e over \(\Q(\sqrt{6}) \)

Isogeny class 150.1-e contains 12 curves linked by isogenies of degrees dividing 24.

Curve label Weierstrass Coefficients
150.1-e1 \( \bigl[1\) , \( 0\) , \( 1\) , \( 885 a - 2449\) , \( -24162 a + 61154\bigr] \)
150.1-e2 \( \bigl[1\) , \( 0\) , \( 1\) , \( -14\) , \( -64\bigr] \)
150.1-e3 \( \bigl[1\) , \( 0\) , \( 1\) , \( 1\) , \( 2\bigr] \)
150.1-e4 \( \bigl[1\) , \( 0\) , \( 1\) , \( 1310 a - 1414\) , \( -25288 a + 58064\bigr] \)
150.1-e5 \( \bigl[1\) , \( 0\) , \( 1\) , \( -454\) , \( -544\bigr] \)
150.1-e6 \( \bigl[1\) , \( 0\) , \( 1\) , \( -69\) , \( -194\bigr] \)
150.1-e7 \( \bigl[1\) , \( 0\) , \( 1\) , \( -19\) , \( 26\bigr] \)
150.1-e8 \( \bigl[1\) , \( 0\) , \( 1\) , \( -1310 a - 1414\) , \( 25288 a + 58064\bigr] \)
150.1-e9 \( \bigl[1\) , \( 0\) , \( 1\) , \( -334\) , \( -2368\bigr] \)
150.1-e10 \( \bigl[1\) , \( 0\) , \( 1\) , \( -289\) , \( 1862\bigr] \)
150.1-e11 \( \bigl[1\) , \( 0\) , \( 1\) , \( -5334\) , \( -150368\bigr] \)
150.1-e12 \( \bigl[1\) , \( 0\) , \( 1\) , \( -885 a - 2449\) , \( 24162 a + 61154\bigr] \)

Rank

Rank not yet determined.

Isogeny matrix

\(\left(\begin{array}{rrrrrrrrrrrr} 1 & 24 & 8 & 3 & 6 & 8 & 4 & 12 & 12 & 2 & 24 & 4 \\ 24 & 1 & 3 & 8 & 4 & 12 & 6 & 8 & 2 & 12 & 4 & 24 \\ 8 & 3 & 1 & 24 & 12 & 4 & 2 & 24 & 6 & 4 & 12 & 8 \\ 3 & 8 & 24 & 1 & 2 & 24 & 12 & 4 & 4 & 6 & 8 & 12 \\ 6 & 4 & 12 & 2 & 1 & 12 & 6 & 2 & 2 & 3 & 4 & 6 \\ 8 & 12 & 4 & 24 & 12 & 1 & 2 & 24 & 6 & 4 & 3 & 8 \\ 4 & 6 & 2 & 12 & 6 & 2 & 1 & 12 & 3 & 2 & 6 & 4 \\ 12 & 8 & 24 & 4 & 2 & 24 & 12 & 1 & 4 & 6 & 8 & 3 \\ 12 & 2 & 6 & 4 & 2 & 6 & 3 & 4 & 1 & 6 & 2 & 12 \\ 2 & 12 & 4 & 6 & 3 & 4 & 2 & 6 & 6 & 1 & 12 & 2 \\ 24 & 4 & 12 & 8 & 4 & 3 & 6 & 8 & 2 & 12 & 1 & 24 \\ 4 & 24 & 8 & 12 & 6 & 8 & 4 & 3 & 12 & 2 & 24 & 1 \end{array}\right)\)

Isogeny graph