Properties

Label 2.2.217.1-6.3-a1
Base field \(\Q(\sqrt{217}) \)
Conductor norm \( 6 \)
CM no
Base change no
Q-curve no
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{217}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 54 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-54, -1, 1]))
 
gp: K = nfinit(Polrev([-54, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-54, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-1454820719433a+11442834075956\right){x}-857134272549098598a+6741755276503009165\)
sage: E = EllipticCurve([K([0,1]),K([1,-1]),K([1,1]),K([11442834075956,-1454820719433]),K([6741755276503009165,-857134272549098598])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([1,-1]),Polrev([1,1]),Polrev([11442834075956,-1454820719433]),Polrev([6741755276503009165,-857134272549098598])], K);
 
magma: E := EllipticCurve([K![0,1],K![1,-1],K![1,1],K![11442834075956,-1454820719433],K![6741755276503009165,-857134272549098598]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((275a-2163)\) = \((-a-7)\cdot(-52a-357)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 6 \) = \(2\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-263a-1809)\) = \((-a-7)\cdot(-52a-357)^{8}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 13122 \) = \(2\cdot3^{8}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{1333879}{13122} a + \frac{5641217}{6561} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 16.229875353437826996502529645015272289 \)
Tamagawa product: \( 8 \)  =  \(1\cdot2^{3}\)
Torsion order: \(1\)
Leading coefficient: \( 8.8140458327149188481878645269569738091 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a-7)\) \(2\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((-52a-357)\) \(3\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 6.3-a consists of this curve only.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.