Properties

Label 2.2.21.1-300.1-a3
Base field \(\Q(\sqrt{21}) \)
Conductor \((-10 a + 20)\)
Conductor norm \( 300 \)
CM no
Base change yes: 30.a2,4410.z2
Q-curve yes
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{21}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 5 \); class number \(1\).

sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x - 5)
 
gp: K = nfinit(a^2 - a - 5);
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-5, -1, 1]);
 

Weierstrass equation

\(y^2+xy+y=x^{3}-454x-544\)
sage: E = EllipticCurve(K, [1, 0, 1, -454, -544])
 
gp: E = ellinit([1, 0, 1, -454, -544],K)
 
magma: E := ChangeRing(EllipticCurve([1, 0, 1, -454, -544]),K);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-10 a + 20)\) = \( \left(2\right) \cdot \left(-a + 2\right) \cdot \left(-a\right) \cdot \left(-a + 1\right) \)
sage: E.conductor()
 
magma: Conductor(E);
 
Conductor norm: \( 300 \) = \( 3 \cdot 4 \cdot 5^{2} \)
sage: E.conductor().norm()
 
magma: Norm(Conductor(E));
 
Discriminant: \((5859375000)\) = \( \left(2\right)^{3} \cdot \left(-a + 2\right)^{2} \cdot \left(-a\right)^{12} \cdot \left(-a + 1\right)^{12} \)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 34332275390625000000 \) = \( 3^{2} \cdot 4^{3} \cdot 5^{24} \)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{10316097499609}{5859375000} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{87}{4} : -\frac{91}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 1.24839523695912 \)
Tamagawa product: \( 24 \)  =  \(2\cdot2\cdot2\cdot3\)
Torsion order: \(2\)
Leading coefficient: \(1.63453304873929\)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a + 2\right) \) \(3\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\( \left(-a\right) \) \(5\) \(2\) \(I_{12}\) Non-split multiplicative \(1\) \(1\) \(12\) \(12\)
\( \left(-a + 1\right) \) \(5\) \(2\) \(I_{12}\) Non-split multiplicative \(1\) \(1\) \(12\) \(12\)
\( \left(2\right) \) \(4\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 300.1-a consists of curves linked by isogenies of degrees dividing 12.

Base change

This curve is the base change of elliptic curves 30.a2, 4410.z2, defined over \(\Q\), so it is also a \(\Q\)-curve.