Properties

Label 2.2.21.1-2100.1-n12
Base field \(\Q(\sqrt{21}) \)
Conductor norm \( 2100 \)
CM no
Base change no
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{21}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 5 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-5, -1, 1]))
 
gp: K = nfinit(Polrev([-5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-5, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+{y}={x}^{3}+\left(-1149680a-2410633\right){x}-1101560992a-2053365692\)
sage: E = EllipticCurve([K([1,0]),K([0,0]),K([1,0]),K([-2410633,-1149680]),K([-2053365692,-1101560992])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,0]),Polrev([1,0]),Polrev([-2410633,-1149680]),Polrev([-2053365692,-1101560992])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,0],K![1,0],K![-2410633,-1149680],K![-2053365692,-1101560992]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-20a+10)\) = \((-a+2)\cdot(2)\cdot(-a)\cdot(-a+1)\cdot(a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 2100 \) = \(3\cdot4\cdot5\cdot5\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((359800a+11200)\) = \((-a+2)\cdot(2)^{3}\cdot(-a)^{2}\cdot(-a+1)^{8}\cdot(a+3)^{3}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( -643125000000 \) = \(-3\cdot4^{3}\cdot5^{2}\cdot5^{8}\cdot7^{3}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{679348670139067650666564663877375333}{229687500} a + \frac{486763606808159200487213746225932511}{91875000} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{117887}{1156} a + \frac{3608653}{1156} : \frac{299212142}{4913} a - \frac{1893838043}{39304} : 1\right)$
Height \(10.893641622233776106357962557761203442\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-448 a - \frac{473}{4} : 224 a + \frac{469}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 10.893641622233776106357962557761203442 \)
Period: \( 0.0096148332724156311837289343352658797914 \)
Tamagawa product: \( 144 \)  =  \(1\cdot3\cdot2\cdot2^{3}\cdot3\)
Torsion order: \(2\)
Leading coefficient: \( 6.5826032805621811503039645725245169927 \)
Analytic order of Ш: \( 4 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+2)\) \(3\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((2)\) \(4\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\((-a)\) \(5\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((-a+1)\) \(5\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((a+3)\) \(7\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6, 8, 12 and 24.
Its isogeny class 2100.1-n consists of curves linked by isogenies of degrees dividing 24.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.