Properties

Label 2.2.21.1-2100.1-d2
Base field \(\Q(\sqrt{21}) \)
Conductor norm \( 2100 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{21}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 5 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-5, -1, 1]))
 
gp: K = nfinit(Polrev([-5, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-5, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}+729{x}-176985\)
sage: E = EllipticCurve([K([1,0]),K([0,0]),K([0,0]),K([729,0]),K([-176985,0])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([0,0]),Polrev([0,0]),Polrev([729,0]),Polrev([-176985,0])], K);
 
magma: E := EllipticCurve([K![1,0],K![0,0],K![0,0],K![729,0],K![-176985,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-20a+10)\) = \((-a+2)\cdot(2)\cdot(-a)\cdot(-a+1)\cdot(a+3)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 2100 \) = \(3\cdot4\cdot5\cdot5\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-13565917968750)\) = \((-a+2)^{8}\cdot(2)\cdot(-a)^{12}\cdot(-a+1)^{12}\cdot(a+3)^{6}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 184034130334854125976562500 \) = \(3^{8}\cdot4\cdot5^{12}\cdot5^{12}\cdot7^{6}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{42841933504271}{13565917968750} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{714}{25} a + \frac{4509}{25} : \frac{71757}{125} a - \frac{326367}{125} : 1\right)$
Height \(2.1777143183255250873268558241492866728\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{207}{4} : -\frac{207}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.1777143183255250873268558241492866728 \)
Period: \( 0.11004975346448351371077029827261075469 \)
Tamagawa product: \( 192 \)  =  \(2^{3}\cdot1\cdot2\cdot2\cdot( 2 \cdot 3 )\)
Torsion order: \(2\)
Leading coefficient: \( 5.0205531170414172831215845522919499719 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+2)\) \(3\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((2)\) \(4\) \(1\) \(I_{1}\) Split multiplicative \(-1\) \(1\) \(1\) \(1\)
\((-a)\) \(5\) \(2\) \(I_{12}\) Non-split multiplicative \(1\) \(1\) \(12\) \(12\)
\((-a+1)\) \(5\) \(2\) \(I_{12}\) Non-split multiplicative \(1\) \(1\) \(12\) \(12\)
\((a+3)\) \(7\) \(6\) \(I_{6}\) Split multiplicative \(-1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 2100.1-d consists of curves linked by isogenies of degrees dividing 12.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 210.d8
\(\Q\) 4410.f8