Properties

Label 2.2.17.1-676.4-b1
Base field \(\Q(\sqrt{17}) \)
Conductor norm \( 676 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{17}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 4 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-4, -1, 1]))
 
gp: K = nfinit(Polrev([-4, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-4, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(567a-1454\right){x}+10109a-25896\)
sage: E = EllipticCurve([K([1,0]),K([-1,1]),K([0,0]),K([-1454,567]),K([-25896,10109])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([-1,1]),Polrev([0,0]),Polrev([-1454,567]),Polrev([-25896,10109])], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,1],K![0,0],K![-1454,567],K![-25896,10109]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-20a-22)\) = \((-a+2)\cdot(-a-1)\cdot(-2a+3)^{2}\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 676 \) = \(2\cdot2\cdot13^{2}\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1067624a+2671456)\) = \((-a+2)^{6}\cdot(-a-1)^{3}\cdot(-2a+3)^{9}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 5429503678976 \) = \(2^{6}\cdot2^{3}\cdot13^{9}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{5010665}{64} a + \frac{12946469}{64} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(\frac{23}{4} a - 17 : -\frac{23}{8} a + \frac{17}{2} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 2.8428318801470273958584427312623547219 \)
Tamagawa product: \( 12 \)  =  \(2\cdot3\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 2.0684640207740187503002045052262756249 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+2)\) \(2\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\((-a-1)\) \(2\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\((-2a+3)\) \(13\) \(2\) \(III^{*}\) Additive \(-1\) \(2\) \(9\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3Ns

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 676.4-b consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.