# Properties

 Base field $$\Q(\sqrt{17})$$ Label 2.2.17.1-612.1-l6 Conductor $$(-12 a + 6)$$ Conductor norm $$612$$ CM no base-change yes: 102.b2,1734.b2 Q-curve yes Torsion order $$12$$ Rank not available

# Learn more about

Show commands for: Magma / SageMath / Pari/GP

## Base field $$\Q(\sqrt{17})$$

Generator $$a$$, with minimal polynomial $$x^{2} - x - 4$$; class number $$1$$.

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-4, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x - 4)
gp (2.8): K = nfinit(a^2 - a - 4);

## Weierstrass equation

$$y^2 + x y + y = x^{3} - 256 x + 1550$$
magma: E := ChangeRing(EllipticCurve([1, 0, 1, -256, 1550]),K);
sage: E = EllipticCurve(K, [1, 0, 1, -256, 1550])
gp (2.8): E = ellinit([1, 0, 1, -256, 1550],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

## Invariants

 $$\mathfrak{N}$$ = $$(-12 a + 6)$$ = $$\left(-a + 2\right) \cdot \left(-a - 1\right) \cdot \left(3\right) \cdot \left(-2 a + 1\right)$$ magma: Conductor(E); sage: E.conductor() $$N(\mathfrak{N})$$ = $$612$$ = $$2^{2} \cdot 9 \cdot 17$$ magma: Norm(Conductor(E)); sage: E.conductor().norm() $$\mathfrak{D}$$ = $$(793152)$$ = $$\left(-a + 2\right)^{6} \cdot \left(-a - 1\right)^{6} \cdot \left(3\right)^{6} \cdot \left(-2 a + 1\right)^{2}$$ magma: Discriminant(E); sage: E.discriminant() gp (2.8): E.disc $$N(\mathfrak{D})$$ = $$629090095104$$ = $$2^{12} \cdot 9^{6} \cdot 17^{2}$$ magma: Norm(Discriminant(E)); sage: E.discriminant().norm() gp (2.8): norm(E.disc) $$j$$ = $$\frac{1845026709625}{793152}$$ magma: jInvariant(E); sage: E.j_invariant() gp (2.8): E.j $$\text{End} (E)$$ = $$\Z$$ (no Complex Multiplication ) magma: HasComplexMultiplication(E); sage: E.has_cm(), E.cm_discriminant() $$\text{ST} (E)$$ = $\mathrm{SU}(2)$

## Mordell-Weil group

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

## Torsion subgroup

Structure: $$\Z/2\Z\times\Z/6\Z$$ magma: TorsionSubgroup(E); sage: E.torsion_subgroup().gens() gp (2.8): elltors(E)[2] magma: Order(TorsionSubgroup(E)); sage: E.torsion_order() gp (2.8): elltors(E)[1] $\left(-3 a + 16 : -15 a + 38 : 1\right)$,$\left(9 : -5 : 1\right)$ magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E); sage: E.torsion_subgroup().gens() gp (2.8): elltors(E)[3]

## Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$\left(-a + 2\right)$$ $$2$$ $$2$$ $$I_{6}$$ Non-split multiplicative $$1$$ $$1$$ $$6$$ $$6$$
$$\left(-a - 1\right)$$ $$2$$ $$2$$ $$I_{6}$$ Non-split multiplicative $$1$$ $$1$$ $$6$$ $$6$$
$$\left(-2 a + 1\right)$$ $$17$$ $$2$$ $$I_{2}$$ Non-split multiplicative $$1$$ $$1$$ $$2$$ $$2$$
$$\left(3\right)$$ $$9$$ $$6$$ $$I_{6}$$ Split multiplicative $$-1$$ $$1$$ $$6$$ $$6$$

## Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p$$ except those listed.

prime Image of Galois Representation
$$2$$ 2Cs
$$3$$ 3B.1.1

## Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3 and 6.
Its isogeny class 612.1-l consists of curves linked by isogenies of degrees dividing 12.

## Base change

This curve is the base-change of elliptic curves 102.b2, 1734.b2, defined over $$\Q$$, so it is also a $$\Q$$-curve.