Properties

Label 2.2.17.1-576.7-e5
Base field \(\Q(\sqrt{17}) \)
Conductor \((15 a + 12)\)
Conductor norm \( 576 \)
CM no
Base change no
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{17}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 4 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-4, -1, 1]))
 
gp: K = nfinit(Pol(Vecrev([-4, -1, 1])));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-4, -1, 1]);
 

Weierstrass equation

\(y^2+axy+ay=x^{3}+\left(-a+1\right)x^{2}+\left(59a-157\right)x+436a-1117\)
sage: E = EllipticCurve([K([0,1]),K([1,-1]),K([0,1]),K([-157,59]),K([-1117,436])])
 
gp: E = ellinit([Pol(Vecrev([0,1])),Pol(Vecrev([1,-1])),Pol(Vecrev([0,1])),Pol(Vecrev([-157,59])),Pol(Vecrev([-1117,436]))], K);
 
magma: E := EllipticCurve([K![0,1],K![1,-1],K![0,1],K![-157,59],K![-1117,436]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((15 a + 12)\) = \( \left(-a + 2\right)^{6} \cdot \left(3\right) \)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 576 \) = \( 2^{6} \cdot 9 \)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((297 a + 4500)\) = \( \left(-a + 2\right)^{18} \cdot \left(3\right)^{2} \)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 21233664 \) = \( 2^{18} \cdot 9^{2} \)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{14326000}{9} a + \frac{36913625}{9} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{187}{16} a + \frac{125}{4} : -\frac{5911}{64} a + \frac{3749}{16} : 1\right)$
Height \(1.95697104151459\)
Torsion structure: \(\Z/2\Z\times\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(2 a - 7 : 2 a - 4 : 1\right)$ $\left(-4 a + 11 : -4 a + 8 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 1.95697104151459 \)
Period: \( 7.24262255020967 \)
Tamagawa product: \( 8 \)  =  \(2^{2}\cdot2\)
Torsion order: \(4\)
Leading coefficient: \(3.43760356448729\)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a + 2\right) \) \(2\) \(4\) \(I_{8}^*\) Additive \(1\) \(6\) \(18\) \(0\)
\( \left(3\right) \) \(9\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 4 and 8.
Its isogeny class 576.7-e consists of curves linked by isogenies of degrees dividing 16.

Base change

This curve is not the base change of an elliptic curve defined over \(\Q\). It is a \(\Q\)-curve.