Properties

Base field \(\Q(\sqrt{17}) \)
Label 2.2.17.1-128.5-b
Conductor 128.5
Rank \( 0 \)

Related objects

Learn more about

Base field \(\Q(\sqrt{17}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 4 \); class number \(1\).

Elliptic curves in class 128.5-b over \(\Q(\sqrt{17}) \)

Isogeny class 128.5-b contains 12 curves linked by isogenies of degrees dividing 24.

Curve label Weierstrass Coefficients
128.5-b1 \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( -23 a + 42\) , \( -329 a + 864\bigr] \)
128.5-b2 \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -89 a + 228\) , \( -57 a + 146\bigr] \)
128.5-b3 \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 274 a + 429\) , \( 18518 a + 28917\bigr] \)
128.5-b4 \( \bigl[a + 1\) , \( -a + 1\) , \( 0\) , \( 2 a - 3\) , \( 14 a - 35\bigr] \)
128.5-b5 \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -33 a - 52\) , \( 13 a + 20\bigr] \)
128.5-b6 \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 1996 a - 5262\) , \( -72821 a + 185664\bigr] \)
128.5-b7 \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( 116 a - 342\) , \( -1173 a + 3040\bigr] \)
128.5-b8 \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( a - 7\) , \( -7 a - 6\bigr] \)
128.5-b9 \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -373 a - 592\) , \( 5721 a + 8920\bigr] \)
128.5-b10 \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -1898 a - 2967\) , \( 64912 a + 101365\bigr] \)
128.5-b11 \( \bigl[a + 1\) , \( a\) , \( a + 1\) , \( -9 a - 117\) , \( -339 a - 74\bigr] \)
128.5-b12 \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( 10858 a - 27827\) , \( 698508 a - 1789259\bigr] \)

Rank

Rank: \( 0 \)

Isogeny matrix

\(\left(\begin{array}{rrrrrrrrrrrr} 1 & 24 & 8 & 3 & 6 & 8 & 4 & 12 & 12 & 2 & 24 & 4 \\ 24 & 1 & 3 & 8 & 4 & 12 & 6 & 2 & 8 & 12 & 4 & 24 \\ 8 & 3 & 1 & 24 & 12 & 4 & 2 & 6 & 24 & 4 & 12 & 8 \\ 3 & 8 & 24 & 1 & 2 & 24 & 12 & 4 & 4 & 6 & 8 & 12 \\ 6 & 4 & 12 & 2 & 1 & 12 & 6 & 2 & 2 & 3 & 4 & 6 \\ 8 & 12 & 4 & 24 & 12 & 1 & 2 & 6 & 24 & 4 & 3 & 8 \\ 4 & 6 & 2 & 12 & 6 & 2 & 1 & 3 & 12 & 2 & 6 & 4 \\ 12 & 2 & 6 & 4 & 2 & 6 & 3 & 1 & 4 & 6 & 2 & 12 \\ 12 & 8 & 24 & 4 & 2 & 24 & 12 & 4 & 1 & 6 & 8 & 3 \\ 2 & 12 & 4 & 6 & 3 & 4 & 2 & 6 & 6 & 1 & 12 & 2 \\ 24 & 4 & 12 & 8 & 4 & 3 & 6 & 2 & 8 & 12 & 1 & 24 \\ 4 & 24 & 8 & 12 & 6 & 8 & 4 & 12 & 3 & 2 & 24 & 1 \end{array}\right)\)

Isogeny graph