Properties

Label 2.2.165.1-11.1-c1
Base field \(\Q(\sqrt{165}) \)
Conductor norm \( 11 \)
CM no
Base change yes
Q-curve yes
Torsion order \( 1 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{165}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 41 \); class number \(2\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-41, -1, 1]))
 
gp: K = nfinit(Polrev([-41, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-41, -1, 1]);
 

Weierstrass equation

\({y}^2+{y}={x}^{3}+a{x}^{2}+\left(-101664a-602152\right){x}+44484722a+263466147\)
sage: E = EllipticCurve([K([0,0]),K([0,1]),K([1,0]),K([-602152,-101664]),K([263466147,44484722])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([0,1]),Polrev([1,0]),Polrev([-602152,-101664]),Polrev([263466147,44484722])], K);
 
magma: E := EllipticCurve([K![0,0],K![0,1],K![1,0],K![-602152,-101664],K![263466147,44484722]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((a+5)\) = \((a+5)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 11 \) = \(11\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-11)\) = \((a+5)^{2}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 121 \) = \(11^{2}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{52893159101157376}{11} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: trivial
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 8.5125836874235053042001518168328721296 \)
Tamagawa product: \( 2 \)
Torsion order: \(1\)
Leading coefficient: \( 1.3254074825491605534926870403868769082 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+5)\) \(11\) \(2\) \(I_{2}\) Non-split multiplicative \(1\) \(1\) \(2\) \(2\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(5\) 5B.4.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 5 and 25.
Its isogeny class 11.1-c consists of curves linked by isogenies of degrees dividing 25.

Base change

This elliptic curve is a \(\Q\)-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
\(\Q\) 121.d1
\(\Q\) 2475.a1