Properties

Label 2.2.161.1-28.1-c1
Base field \(\Q(\sqrt{161}) \)
Conductor norm \( 28 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{161}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 40 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-40, -1, 1]))
 
gp: K = nfinit(Polrev([-40, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-40, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(183a+1084\right){x}+57821a+337912\)
sage: E = EllipticCurve([K([1,0]),K([-1,1]),K([0,0]),K([1084,183]),K([337912,57821])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([-1,1]),Polrev([0,0]),Polrev([1084,183]),Polrev([337912,57821])], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,1],K![0,0],K![1084,183],K![337912,57821]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-64a+438)\) = \((a+6)\cdot(-a+7)\cdot(-32a+219)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 28 \) = \(2\cdot2\cdot7\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((1372a-9408)\) = \((a+6)^{5}\cdot(-a+7)^{2}\cdot(-32a+219)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 307328 \) = \(2^{5}\cdot2^{2}\cdot7^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{209009}{1568} a + \frac{1439969}{1568} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(\frac{3257}{64} a + \frac{2397}{8} : \frac{658335}{512} a + \frac{480867}{64} : 1\right)$
Height \(2.4466475242850699341559915004640991402\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(-\frac{27}{4} a - \frac{149}{4} : \frac{27}{8} a + \frac{149}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 2.4466475242850699341559915004640991402 \)
Period: \( 12.172077606545418436078874066537639010 \)
Tamagawa product: \( 4 \)  =  \(1\cdot2\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 4.6941090829957663989160129490833630372 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((a+6)\) \(2\) \(1\) \(I_{5}\) Non-split multiplicative \(1\) \(1\) \(5\) \(5\)
\((-a+7)\) \(2\) \(2\) \(I_{2}\) Split multiplicative \(-1\) \(1\) \(2\) \(2\)
\((-32a+219)\) \(7\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 28.1-c consists of curves linked by isogenies of degree 2.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.