Properties

Label 2.2.161.1-10.3-g4
Base field \(\Q(\sqrt{161}) \)
Conductor norm \( 10 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{161}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 40 \); class number \(1\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-40, -1, 1]))
 
gp: K = nfinit(Polrev([-40, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-40, -1, 1]);
 

Weierstrass equation

\({y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(10132526a-69349916\right){x}+43094732226a-294952791826\)
sage: E = EllipticCurve([K([1,0]),K([1,1]),K([1,1]),K([-69349916,10132526]),K([-294952791826,43094732226])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([1,1]),Polrev([1,1]),Polrev([-69349916,10132526]),Polrev([-294952791826,43094732226])], K);
 
magma: E := EllipticCurve([K![1,0],K![1,1],K![1,1],K![-69349916,10132526],K![-294952791826,43094732226]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-a-5)\) = \((-a+7)\cdot(-6a-35)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: \( 10 \) = \(2\cdot5\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: \((-73a+505)\) = \((-a+7)^{3}\cdot(-6a-35)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 5000 \) = \(2^{3}\cdot5^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( \frac{105610969788907510039}{5000} a + \frac{77152625593754088522}{625} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(1\)
Generator $\left(-\frac{2630557}{700} a + \frac{18002437}{700} : -\frac{38853985089}{49000} a + \frac{265927766249}{49000} : 1\right)$
Height \(8.1279074821021334252437415991626545168\)
Torsion structure: \(\Z/2\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generator: $\left(581 a - \frac{15917}{4} : -291 a + \frac{15913}{8} : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(1\)
Regulator: \( 8.1279074821021334252437415991626545168 \)
Period: \( 1.1484058674408355787658803064400728265 \)
Tamagawa product: \( 6 \)  =  \(3\cdot2\)
Torsion order: \(2\)
Leading coefficient: \( 2.2068990663546852428366989988807683490 \)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\((-a+7)\) \(2\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)
\((-6a-35)\) \(5\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 10.3-g consists of curves linked by isogenies of degrees dividing 4.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.