Properties

Label 2.2.13.1-27.2-a6
Base field \(\Q(\sqrt{13}) \)
Conductor \((-3 a + 3)\)
Conductor norm \( 27 \)
CM no
Base change no
Q-curve yes
Torsion order \( 12 \)
Rank \( 0 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{13}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x - 3 \); class number \(1\).

sage: x = polygen(QQ); K.<a> = NumberField(x^2 - x - 3)
 
gp: K = nfinit(a^2 - a - 3);
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, -1, 1]);
 

Weierstrass equation

\(y^2+\left(a+1\right)xy+\left(a+1\right)y=x^{3}-ax^{2}+\left(82a-204\right)x-547a+1264\)
sage: E = EllipticCurve(K, [a + 1, -a, a + 1, 82*a - 204, -547*a + 1264])
 
gp: E = ellinit([a + 1, -a, a + 1, 82*a - 204, -547*a + 1264],K)
 
magma: E := ChangeRing(EllipticCurve([a + 1, -a, a + 1, 82*a - 204, -547*a + 1264]),K);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Invariants

Conductor: \((-3 a + 3)\) = \( \left(-a\right) \cdot \left(-a + 1\right)^{2} \)
sage: E.conductor()
 
magma: Conductor(E);
 
Conductor norm: \( 27 \) = \( 3^{3} \)
sage: E.conductor().norm()
 
magma: Norm(Conductor(E));
 
Discriminant: \((59049 a + 177147)\) = \( \left(-a\right)^{12} \cdot \left(-a + 1\right)^{10} \)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: \( 31381059609 \) = \( 3^{22} \)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: \( -\frac{449577713875}{531441} a + \frac{1037190880375}{531441} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \(0\)
Torsion structure: \(\Z/2\Z\times\Z/6\Z\)
sage: T = E.torsion_subgroup(); T.invariants()
 
gp: T = elltors(E); T[2]
 
magma: T,piT := TorsionSubgroup(E); Invariants(T);
 
Torsion generators: $\left(-6 a + 14 : 21 a - 48 : 1\right)$ $\left(6 a - 13 : -3 : 1\right)$
sage: T.gens()
 
gp: T[3]
 
magma: [piT(P) : P in Generators(T)];
 

BSD invariants

Analytic rank: \( 0 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: \(0\)
Regulator: \( 1 \)
Period: \( 9.39830850959964 \)
Tamagawa product: \( 48 \)  =  \(( 2^{2} \cdot 3 )\cdot2^{2}\)
Torsion order: \(12\)
Leading coefficient: \(0.868873929076694\)
Analytic order of Ш: \( 1 \) (rounded)

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(-a\right) \) \(3\) \(12\) \(I_{12}\) Split multiplicative \(-1\) \(1\) \(12\) \(12\)
\( \left(-a + 1\right) \) \(3\) \(4\) \(I_{4}^*\) Additive \(-1\) \(2\) \(10\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2Cs
\(3\) 3B.1.1

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 27.2-a consists of curves linked by isogenies of degrees dividing 24.

Base change

This curve is not the base change of an elliptic curve defined over \(\Q\). It is a \(\Q\)-curve.