# Properties

 Base field $$\Q(\sqrt{3})$$ Label 2.2.12.1-200.1-a4 Conductor $$(10 a + 10)$$ Conductor norm $$200$$ CM no base-change yes: 720.e1,40.a1 Q-curve yes Torsion order $$2$$ Rank not available

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Base field $$\Q(\sqrt{3})$$

Generator $$a$$, with minimal polynomial $$x^{2} - 3$$; class number $$1$$.

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^2 - 3)
gp (2.8): K = nfinit(a^2 - 3);

## Weierstrass equation

$$y^2 + \left(a + 1\right) x y = x^{3} + \left(a - 1\right) x^{2} + \left(-107 a - 185\right) x - 892 a - 1545$$
magma: E := ChangeRing(EllipticCurve([a + 1, a - 1, 0, -107*a - 185, -892*a - 1545]),K);
sage: E = EllipticCurve(K, [a + 1, a - 1, 0, -107*a - 185, -892*a - 1545])
gp (2.8): E = ellinit([a + 1, a - 1, 0, -107*a - 185, -892*a - 1545],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

## Invariants

 $$\mathfrak{N}$$ = $$(10 a + 10)$$ = $$\left(a + 1\right)^{3} \cdot \left(5\right)$$ magma: Conductor(E); sage: E.conductor() $$N(\mathfrak{N})$$ = $$200$$ = $$2^{3} \cdot 25$$ magma: Norm(Conductor(E)); sage: E.conductor().norm() $$\mathfrak{D}$$ = $$(80)$$ = $$\left(a + 1\right)^{8} \cdot \left(5\right)$$ magma: Discriminant(E); sage: E.discriminant() gp (2.8): E.disc $$N(\mathfrak{D})$$ = $$6400$$ = $$2^{8} \cdot 25$$ magma: Norm(Discriminant(E)); sage: E.discriminant().norm() gp (2.8): norm(E.disc) $$j$$ = $$\frac{132304644}{5}$$ magma: jInvariant(E); sage: E.j_invariant() gp (2.8): E.j $$\text{End} (E)$$ = $$\Z$$ (no Complex Multiplication ) magma: HasComplexMultiplication(E); sage: E.has_cm(), E.cm_discriminant() $$\text{ST} (E)$$ = $\mathrm{SU}(2)$

## Mordell-Weil group

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

## Torsion subgroup

Structure: $$\Z/2\Z$$ magma: TorsionSubgroup(E); sage: E.torsion_subgroup().gens() gp (2.8): elltors(E)[2] magma: Order(TorsionSubgroup(E)); sage: E.torsion_order() gp (2.8): elltors(E)[1] $\left(-\frac{7}{2} a - 6 : \frac{19}{4} a + \frac{33}{4} : 1\right)$ magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E); sage: E.torsion_subgroup().gens() gp (2.8): elltors(E)[3]

## Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$\left(a + 1\right)$$ $$2$$ $$4$$ $$I_{1}^*$$ Additive $$-1$$ $$3$$ $$8$$ $$0$$
$$\left(5\right)$$ $$25$$ $$1$$ $$I_{1}$$ Split multiplicative $$-1$$ $$1$$ $$1$$ $$1$$

## Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p$$ except those listed.

prime Image of Galois Representation
$$2$$ 2B

## Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 200.1-a consists of curves linked by isogenies of degrees dividing 4.

## Base change

This curve is the base-change of elliptic curves 720.e1, 40.a1, defined over $$\Q$$, so it is also a $$\Q$$-curve.