# Properties

 Base field $$\Q(\sqrt{3})$$ Label 2.2.12.1-1024.1-h2 Conductor $$(32)$$ Conductor norm $$1024$$ CM yes ($$-4$$) base-change no Q-curve yes Torsion order $$4$$ Rank not available

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Base field $$\Q(\sqrt{3})$$

Generator $$a$$, with minimal polynomial $$x^{2} - 3$$; class number $$1$$.

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^2 - 3)
gp (2.8): K = nfinit(a^2 - 3);

## Weierstrass equation

$$y^2 = x^{3} + \left(30 a - 52\right) x$$
magma: E := ChangeRing(EllipticCurve([0, 0, 0, 30*a - 52, 0]),K);
sage: E = EllipticCurve(K, [0, 0, 0, 30*a - 52, 0])
gp (2.8): E = ellinit([0, 0, 0, 30*a - 52, 0],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

## Invariants

 $$\mathfrak{N}$$ = $$(32)$$ = $$\left(a + 1\right)^{10}$$ magma: Conductor(E); sage: E.conductor() $$N(\mathfrak{N})$$ = $$1024$$ = $$2^{10}$$ magma: Norm(Conductor(E)); sage: E.conductor().norm() $$\mathfrak{D}$$ = $$(512)$$ = $$\left(a + 1\right)^{18}$$ magma: Discriminant(E); sage: E.discriminant() gp (2.8): E.disc $$N(\mathfrak{D})$$ = $$262144$$ = $$2^{18}$$ magma: Norm(Discriminant(E)); sage: E.discriminant().norm() gp (2.8): norm(E.disc) $$j$$ = $$1728$$ magma: jInvariant(E); sage: E.j_invariant() gp (2.8): E.j $$\text{End} (E)$$ = $$\Z[\sqrt{-1}]$$ ( Complex Multiplication ) magma: HasComplexMultiplication(E); sage: E.has_cm(), E.cm_discriminant() $$\text{ST} (E)$$ = $N(\mathrm{U}(1))$

## Mordell-Weil group

Rank not available.
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: not available

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

## Torsion subgroup

Structure: $$\Z/2\Z\times\Z/2\Z$$ magma: TorsionSubgroup(E); sage: E.torsion_subgroup().gens() gp (2.8): elltors(E)[2] magma: Order(TorsionSubgroup(E)); sage: E.torsion_order() gp (2.8): elltors(E)[1] $\left(-3 a + 5 : 0 : 1\right)$,$\left(0 : 0 : 1\right)$ magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E); sage: E.torsion_subgroup().gens() gp (2.8): elltors(E)[3]

## Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord($$\mathfrak{N}$$) ord($$\mathfrak{D}$$) ord$$(j)_{-}$$
$$\left(a + 1\right)$$ $$2$$ $$4$$ $$I_{4}^*$$ Additive $$1$$ $$10$$ $$18$$ $$0$$

## Galois Representations

The mod $$p$$ Galois Representation has maximal image for all primes $$p$$ except those listed.

prime Image of Galois Representation
$$2$$ 2Cs

For all other primes $$p$$, the image is the normalizer of a split Cartan subgroup if $$\left(\frac{ -1 }{p}\right)=+1$$ or the normalizer of a nonsplit Cartan subgroup if $$\left(\frac{ -1 }{p}\right)=-1$$.

## Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2.
Its isogeny class 1024.1-h consists of curves linked by isogenies of degrees dividing 4.

## Base change

This curve is not the base-change of an elliptic curve defined over $$\Q$$. It is a $$\Q$$-curve.