Properties

Base field \(\Q(\sqrt{3}) \)
Label 2.2.12.1-1024.1-h
Conductor 1024.1
Rank not recorded

Related objects

Learn more about

Base field \(\Q(\sqrt{3}) \)

Generator \(a\), with minimal polynomial \( x^{2} - 3 \); class number \(1\).

Elliptic curves in class 1024.1-h over \(\Q(\sqrt{3}) \)

Isogeny class 1024.1-h contains 4 curves linked by isogenies of degrees dividing 4.

Curve label Weierstrass Coefficients
1024.1-h1 \( \bigl[0\) , \( 0\) , \( 0\) , \( -2 a + 4\) , \( 0\bigr] \)
1024.1-h2 \( \bigl[0\) , \( 0\) , \( 0\) , \( 30 a - 52\) , \( 0\bigr] \)
1024.1-h3 \( \bigl[0\) , \( 0\) , \( 0\) , \( 330 a - 572\) , \( 4284 a - 7420\bigr] \)
1024.1-h4 \( \bigl[0\) , \( 0\) , \( 0\) , \( 330 a - 572\) , \( -4284 a + 7420\bigr] \)

Rank

Rank not yet determined.

Isogeny matrix

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph