Properties

Base field \(\Q(\sqrt{-2}) \)
Label 2.0.8.1-450.2-a8
Conductor \((15 a)\)
Conductor norm \( 450 \)
CM no
base-change yes: 30.a1,960.p1
Q-curve yes
Torsion order \( 4 \)
Rank \( 0 \)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Base field \(\Q(\sqrt{-2}) \)

Generator \(a\), with minimal polynomial \( x^{2} + 2 \); class number \(1\).

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^2 + 2)
gp (2.8): K = nfinit(a^2 + 2);

Weierstrass equation

\( y^2 + x y + y = x^{3} - 5334 x - 150368 \)
magma: E := ChangeRing(EllipticCurve([1, 0, 1, -5334, -150368]),K);
sage: E = EllipticCurve(K, [1, 0, 1, -5334, -150368])
gp (2.8): E = ellinit([1, 0, 1, -5334, -150368],K)

This is a global minimal model.

sage: E.is_global_minimal_model()

Invariants

\(\mathfrak{N} \) = \((15 a)\) = \( \left(a\right) \cdot \left(-a - 1\right) \cdot \left(a - 1\right) \cdot \left(5\right) \)
magma: Conductor(E);
sage: E.conductor()
\(N(\mathfrak{N}) \) = \( 450 \) = \( 2 \cdot 3^{2} \cdot 25 \)
magma: Norm(Conductor(E));
sage: E.conductor().norm()
\(\mathfrak{D}\) = \((81000)\) = \( \left(a\right)^{6} \cdot \left(-a - 1\right)^{4} \cdot \left(a - 1\right)^{4} \cdot \left(5\right)^{3} \)
magma: Discriminant(E);
sage: E.discriminant()
gp (2.8): E.disc
\(N(\mathfrak{D})\) = \( 6561000000 \) = \( 2^{6} \cdot 3^{8} \cdot 25^{3} \)
magma: Norm(Discriminant(E));
sage: E.discriminant().norm()
gp (2.8): norm(E.disc)
\(j\) = \( \frac{16778985534208729}{81000} \)
magma: jInvariant(E);
sage: E.j_invariant()
gp (2.8): E.j
\( \text{End} (E) \) = \(\Z\)   (no Complex Multiplication )
magma: HasComplexMultiplication(E);
sage: E.has_cm(), E.cm_discriminant()
\( \text{ST} (E) \) = $\mathrm{SU}(2)$

Mordell-Weil group

Rank: \( 0 \)
magma: Rank(E);
sage: E.rank()
magma: Generators(E); // includes torsion
sage: E.gens()

Regulator: 1

magma: Regulator(Generators(E));
sage: E.regulator_of_points(E.gens())

Torsion subgroup

Structure: \(\Z/4\Z\)
magma: TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[2]
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp (2.8): elltors(E)[1]
Generator: $\left(-43 : -6 a + 21 : 1\right)$
magma: [f(P): P in Generators(T)] where T,f:=TorsionSubgroup(E);
sage: E.torsion_subgroup().gens()
gp (2.8): elltors(E)[3]

Local data at primes of bad reduction

magma: LocalInformation(E);
sage: E.local_data()
prime Norm Tamagawa number Kodaira symbol Reduction type Root number ord(\(\mathfrak{N}\)) ord(\(\mathfrak{D}\)) ord\((j)_{-}\)
\( \left(a\right) \) \(2\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)
\( \left(-a - 1\right) \) \(3\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\( \left(a - 1\right) \) \(3\) \(4\) \(I_{4}\) Split multiplicative \(-1\) \(1\) \(4\) \(4\)
\( \left(5\right) \) \(25\) \(3\) \(I_{3}\) Split multiplicative \(-1\) \(1\) \(3\) \(3\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 450.2-a consists of curves linked by isogenies of degrees dividing 12.

Base change

This curve is the base-change of elliptic curves 30.a1, 960.p1, defined over \(\Q\), so it is also a \(\Q\)-curve.